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Chapter 3 

Power Factor and Measures of 

Distortion 

Read Chapter 3 of “Principles of Power Electronics” (KSV) by J. G. Kassakian, M. 

F. Schlecht, and G. C. Verghese, Addison-Wesley, 1991. Look at the AC side. 

Definitions and Identities 

Two functions X and Y are orthogonal over [a, b] if: 

∫ b 
X(t)Y (t)dt = 0 (3.1) 

a 

Now: 

∫ 2π sin(mωt) sin(nωt + φ)dωt = 0, if n = m sinusoids of different frequencies 0• 6 ⇒ 

are orthogonal.
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∫ 2π • 0 sin(ωt) cos(ωt)dωt = 0 ⇒ sine and cosine are orthogonal. 

In general: 

1 ∫ 2π 1 
sin(ωt) sin(ωt + φ) = cos φ (3.2) 

2π 0 2 

These definitions will be useful for calculating power, etc. 

Suppose we plug a resistor into the wall. 

Rwire Fuse i 

+ 

V RLVsSin(ωt) 

− 

Figure 3.1: Resistor 

P = < V i > 

= VRMS iRMS 

= i2 R (3.3) RMS 

The fuse is rated for a specific RMS current. Above that, it will blow so that 

dissipation in Rwire does not start a fire. Neglecting Rwire, for 115VAC,RMS , 15ARMS 

fuse, we get ∼ 1.7kW max from wall. 

Suppose instead we plug an inductor into the wall. 

Neglecting Rwire: 



∫ 

∫ 

√ 
∫ 
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Rwire Fuse i 

+ 

V LVsSin(ωt) 

− 

Figure 3.2: Inductor 

Vs
i = −

ωL 
cos(ωt) (3.4) 

1 
< P > = V (t)i(t)d(ωt)

2π 
V 2 

= s sin(ωt) cos(ωt)d(ωt)−
2πωL 

= 0 (of course) (3.5) 

Mathematically, it is because V and i are orthogonal. While we draw no real 

power, we still draw current. 

1 2π 
iRMS = i2(ωt)d(ωt)

2π 0 

Vs 
= (3.6) √

2ωL 

@115V, 60Hz, L ≤ 20mH iRMS ≥ 15A (3.7) → 

So we still will blow the fuse (to protect the wall wiring), even though we do not 



∑ 

√ 

∫ 
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draw any real power at the output! (some power dissipated in Rwire). In this case we 

are not utilizing the source well. 

Power Factor 

To provide a measure of the utilization of the source we define Power Factor. 

. < P > Real Power 
P.F. = = (3.8) 

VRMS iRMS Apparent Power 

For a resistor < P >= VRMS iRMS P.F. = 1 best utilization. For a inductor → 

< P >= 0 P.F. = 0 worst utilization. → 

Consider a rectifier drawing some current waveform, 

VsSin( t)ω V(t) 

+ 
Rectifier 

i(t) 

− 

Figure 3.3: Rectifier 

Express i(t) as a Fourier series: 

∞ 

i(t) = in sin(nωt + φn) Sum of weighted shifted sinusoids (3.9) 
n=0 

1 1 1 
Note: iRMS = i1

2 + i2
2 + + i2 + 

2 2 
· · · 

2 n · · · 
1 

< P > = V (t)i(t)d(ωt)
2π 2π 



∫ 

∫ 

∫ 
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1	 ∑ 
= Vs sin(ωt) in sin(nωt + φn)

2π 2π n 
∞	 
∑ 1 

= Vsin sin(ωt) sin(nωt + φn)	 (3.10) 
2	 2π n=0 

By orthogonality all terms except fundamental drop out. 

1 
< P > = Vsi1 sin(ωt) sin(ωt + φ1)

2	 2π 

Vsi1 
= cos φ1

2 

= Vs,RMS i1,RMS cos φ1 (3.11) 

So the only current that contributes to real power is the fundamental component 

in phase with the voltage. 

VRMS i1,RMS 
P.F. =	 cos φ1

VRMS iRMS 
i1,RMS 

= cos φ1 (3.12) 
iRMS 

We can break down into two factors: 

i1,RMS 
P.F.	 = ( ) cos φ1


iRMS 
·


= kd(distortion factor) kθ(displacement factor) · 

(3.13) 

•	 kd, distortion factor (≤ 1) tells us how much the utilization of the source is 

reduced because of harmonic currents that do not contribute to power. 



√ 
√ 

√ 
√ ∑ 

√ 
√ 
√ 

√ 

√ ∑ 
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• kθ, displacement factor (≤ 1) tells us how much utilization is reduced due to 

phase shift between the voltage and fundamental current. 

Total Harmonic Distortion (THD) 

Consider another measure of distortion: Total Harmonic Distortion (THD). 

. n=1 in 
2 

THD = √ 6 (3.14) 
i21 

This measure the RMS of the harmonics normalized to the RMS of the funda

mental (square root of the power ratio). Distortion factor and THD are related: 

√ 
n=1 i2 

THD = √ 6 n 

i2 
1 

√ i2 
RMS − i21,RMS = 

i2 
1,RMS 

i2 

THD2 = 
i2 

RMS − 1 
1,RMS 

i2 
RMS = 1 + THD2 

i2 
1,RMS 

iRMS 
= 

√
1 + THD2 

i1,RMS 

1 
kd = (3.15) 

1 + THD2 

Example: 

V = Vs sin(ωt) 



( ) 
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 4 ipk 
 in = 

πn 2
i(t) = square wave 

 
 
 i0 = iave = 1

2 ipk 

THD = 121% 
ipk 4 1 
2 · π · √2kd = 

ipk√
2 

2 
= 

π 

P.F. = 0.63 (3.16) 

i(t) 

Ipk 

ω t 
π 2π 

Figure 3.4: Example 

(Passive) Power Factor Compensation (KSV: Section 3.4.1) 

Lets focus on the displacement factor component of power factor. For simplicity, 

lets assume a linear load (e.g. R-L) so that voltages and currents are sinusoidal. 

For sinusoidal V and i: 

< P > 
P.F. = = cos φ (3.17) 

VRMS iRMS
 

φ is the power factor angle:
 

Leading φ < 0 Capacitive • 

Lagging φ > 0 Inductive • 
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Real power: 

P = VRMS IRMS cos φ (3.18) 

Define reactive power as: 

.
Q = VRMS IRMS sin φ (3.19) 

Q 

S 

P 

Figure 3.5: Reactive Power 

In vector form S~ = P + jQ. In phaser form V ,~ ~i S~ =< V I∗ >→ 

units 

Apparent Power S =‖ S~ ‖= VRMS IRMS V A 

Average Power Re{S} = P = VRMSIRMS cos φ W 

Reactive Power Im{S} = Q = VRMS IRMS sin φ V AR 

We can use these results to help adjust the displacement factor of a system. (make 

Qnet 0). → 
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i 

θ 

2 2 
R +(ω L) 

ω L 
L 

VsCos(ω t) R 
Im S 

i*R v Re 

i 

Figure 3.6: R-L Load
 

Suppose we have an R-L load (e.g. an induction machine):
 

Vs ωL 
i(t) = √

ω2L2 + R2 
cos(ωt − arctan( 

R 
)) 

since S = 
. 

V I∗ 

ωL 
voltage-current phase φ = arctan( )

R 
ωL 

P.F. = cos(arctan( )) 
R 

R 
= √

R2 + ω2L2 
< 1 (3.20) 

We can add some additional reactive load to balance out and give net unity power 

factor. 

S = VRMS IRM S 

= 
V 2 

2
√

ω2L 
s 
2 + R2 

(3.21) 

P = S cos φ
 

= VRMS IRMS cos φ
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V 2R 
= s (3.22) 

2(ω2L2 + R2) 

jQ = jS sin φ 

= jVRMS IRMS sin φ 

ωLV 2 

= j s (3.23) 
2(ω2L2 + R2) 

So we have real and reactive power. 

Suppose we add a capacitor in parallel: 

i’ 

CVsSin(ωt) 

Figure 3.7: Capacitor


Zc 

1 

Zc


Vphase − iphase


i′


S ′


P ′ 

1 
= 

jωC 

=
1 

e−j π 
2 

ωC 

= ωCej π 
(3.24) 2 

= −90◦ 

π 
= VsωC sin(ωt + ) (3.25) 

2 

= VRMS IRMS 

1 
= V s 

2ωC (3.26) 
2 

= 0 (3.27) 
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1 
Q′ = −j 

2 
V s 

2ωC (3.28) 

So by placing the capacitor in parallel: 

t)VsCos(ω 
L 

R 

P, Q Q’ 

C 

Figure 3.8: Parallel Capacitor 

S = P + jQ + jQ′ 

make jQ and jQ′ cancel: Q + Q′ = 0


ωLV 2 1
sj 
2(ω2L2 + R2) 

− j 
2 
V 2ωC = 0 s 

L 
C = (3.29) 

ω2L2 + R2 

Example: 

ω = 377RAD/sec (ωHZ) 

R = 1Ω 

L = 2.7mH 

C = 1.32mF ⇒ 
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If we know our load, we can add reactive elements to compensate so that no dis

placement factor reduction of line utilization occurs. Real, reactive power definitions 

are useful to help us do this. This does not help with distortion factor. 


