- Introduction
- Problem formulation
- Forward-Backward algorithm
- Viterbi search
- Baum-Welch parameter estimation
- Other considerations
- Multiple observation sequences
- Phone-based models for continuous speech recognition
- Continuous density HMMs
- Implementation issues

Information Theoretic Approach to ASR

Speech Generation Speech Recognition

Recognition is achieved by maximizing the probability of the linguistic string, \boldsymbol{W}, given the acoustic evidence, \boldsymbol{A}, i.e., choose the linguistic sequence $\hat{\boldsymbol{W}}$ such that

$$
P(\hat{\boldsymbol{W}} \mid \boldsymbol{A})=\max _{\boldsymbol{W}} P(\boldsymbol{W} \mid \boldsymbol{A})
$$

Information Theoretic Approach to ASR

- From Bayes rule:

$$
P(\boldsymbol{W} \mid \boldsymbol{A})=\frac{P(\boldsymbol{A} \mid \boldsymbol{W}) P(\boldsymbol{W})}{P(\boldsymbol{A})}
$$

- Hidden Markov modelling (HMM) deals with the quantity $P(\boldsymbol{A} \mid \boldsymbol{W})$
- Change in notation:

$$
\begin{aligned}
\boldsymbol{A} & \rightarrow \boldsymbol{O} \\
\boldsymbol{W} & \rightarrow \lambda \\
P(\boldsymbol{A} \mid \boldsymbol{W}) & \rightarrow P(\boldsymbol{O} \mid \lambda)
\end{aligned}
$$

HMM: An Example

- Consider 3 mugs, each with mixtures of state stones, 1 and 2
- The fractions for the $i^{t h}$ mug are $a_{i 1}$ and $a_{i 2}$, and $a_{i 1}+a_{i 2}=1$
- Consider 2 urns, each with mixtures of black and white balls
- The fractions for the $i^{t h}$ urn are $b_{i}(B)$ and $b_{i}(W) ; b_{i}(B)+b_{i}(W)=1$
- The parameter vector for this model is:

$$
\lambda=\left\{a_{01}, a_{02}, a_{11}, a_{12}, a_{21}, a_{22}, b_{1}(B), b_{1}(W), b_{2}(B), b_{2}(W)\right\}
$$

HMM: An Example (cont’d)

Observation Sequence: $\quad \boldsymbol{O}=\{B, W, B, W, W, B\}$
State Sequence: $\boldsymbol{Q}=\{1,1,2,1,2,1\}$
Goal: Given the model λ and the observation sequence \boldsymbol{O}, how can the underlying state sequence \boldsymbol{Q} be determined?

Elements of a Discrete Hidden Markov Model

- N : number of states in the model
- states, $\boldsymbol{s}=\left\{s_{1}, s_{2}, \ldots, s_{N}\right\}$
- state at time $t, q_{t} \in \boldsymbol{s}$
- M : number of observation symbols (i.e., discrete observations)
- observation symbols, $\boldsymbol{v}=\left\{\nu_{1}, \nu_{2}, \ldots, \nu_{M}\right\}$
- observation at time $t, o_{t} \in \boldsymbol{v}$
- $\boldsymbol{A}=\left\{a_{i j}\right\}$: state transition probability distribution
- $a_{i j}=P\left(q_{t+1}=s_{j} \mid q_{t}=s_{i}\right), 1 \leq i, j \leq N$
- $\boldsymbol{B}=\left\{b_{j}(k)\right\}$: observation symbol probability distribution in state j
- $b_{j}(k)=P\left(v_{k}\right.$ at $\left.t \mid q_{t}=s_{j}\right), 1 \leq j \leq N, 1 \leq k \leq M$
- $\pi=\left\{\pi_{i}\right\}$: initial state distribution
- $\pi_{i}=P\left(q_{1}=s_{i}\right), 1 \leq i \leq N$

Notationally, an HMM is typically written as: $\lambda=\{\boldsymbol{A}, \boldsymbol{B}, \pi\}$

HMM: An Example (cont'd)

For our simple example:

$$
\pi=\left\{a_{01}, a_{02}\right\}, \quad \boldsymbol{A}=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right], \text { and } \quad \boldsymbol{B}=\left[\begin{array}{ll}
b_{1}(B) & b_{1}(W) \\
b_{2}(B) & b_{2}(W)
\end{array}\right]
$$

State Diagram

3-state

Generation of HMM Observations

1. Choose an initial state, $q_{1}=s_{i}$, based on the initial state distribution, π
2. For $t=1$ to T :

- Choose $o_{t}=v_{k}$ according to the symbol probability distribution in state $s_{i}, b_{i}(k)$
- Transition to a new state $q_{t+1}=s_{j}$ according to the state transition probability distribution for state $s_{i}, a_{i j}$

3. Increment t by 1 , return to step 2 if $t \leq T$; else, terminate

Representing State Diagram by Trellis

The dashed line represents a null transition, where no observation symbol is generated

Three Basic HMM Problems

1. Scoring: Given an observation sequence $\boldsymbol{O}=\left\{o_{1}, o_{2}, \ldots, o_{T}\right\}$ and a model $\lambda=\{\boldsymbol{A}, \boldsymbol{B}, \pi\}$, how do we compute $P(\boldsymbol{O} \mid \lambda)$, the probability of the observation sequence?
==> The Forward-Backward Algorithm
2. Matching: Given an observation sequence $\boldsymbol{O}=\left\{o_{1}, o_{2}, \ldots, o_{T}\right\}$, how do we choose a state sequence $\boldsymbol{Q}=\left\{q_{1}, q_{2}, \ldots, q_{T}\right\}$ which is optimum in some sense?
$==>$ The Viterbi Algorithm
3. Training: How do we adjust the model parameters $\lambda=\{A, B, \pi\}$ to maximize $P(\boldsymbol{O} \mid \lambda)$?
$==>$ The Baum-Welch Re-estimation Procedures

Computation of $P(O \mid \lambda)$

$$
\begin{aligned}
P(\boldsymbol{O} \mid \lambda) & =\sum_{\text {all } \boldsymbol{Q}} P(\boldsymbol{O}, \boldsymbol{Q} \mid \lambda) \\
P(\boldsymbol{O}, \boldsymbol{Q} \mid \lambda) & =P(\boldsymbol{O} \mid \boldsymbol{Q}, \lambda) P(\boldsymbol{Q} \mid \lambda)
\end{aligned}
$$

- Consider the fixed state sequence: $\boldsymbol{Q}=q_{1} q_{2} \ldots q_{T}$

$$
\begin{aligned}
P(\boldsymbol{O} \mid \boldsymbol{Q}, \lambda) & =b_{q_{1}}\left(o_{1}\right) b_{q_{2}}\left(o_{2}\right) \ldots b_{q_{T}}\left(o_{T}\right) \\
P(\boldsymbol{Q} \mid \lambda) & =\pi_{q_{1}} a_{q_{1} q_{2}} a_{q_{2} q_{3}} \ldots a_{q_{T-1} q_{T}}
\end{aligned}
$$

Therefore:

$$
P(\boldsymbol{O} \mid \lambda)=\sum_{q_{1}, q_{2}, \ldots, q_{T}} \pi_{q_{1}} b_{q_{1}}\left(o_{1}\right) a_{q_{1} q_{2}} b_{q_{2}}\left(o_{2}\right) \ldots a_{q_{T-1} q_{T}} b_{q_{T}}\left(o_{T}\right)
$$

- Calculation required $\approx 2 T \cdot N^{T}$ (there are N^{T} such sequences) For $N=5, T=100 \Rightarrow 2 \cdot 100 \cdot 5^{100} \approx 10^{72}$ computations!

The Forward Algorithm

- Let us define the forward variable, $\alpha_{t}(i)$, as the probability of the partial observation sequence up to time t and state s_{i} at time t, given the model, i.e.

$$
\alpha_{t}(i)=P\left(o_{1} o_{2} \ldots o_{t}, q_{t}=s_{i} \mid \lambda\right)
$$

- It can easily be shown that:

$$
\alpha_{1}(i)=\pi_{i} b_{i}\left(o_{1}\right), \quad 1 \leq i \leq N
$$

- By induction:

$$
P(\boldsymbol{O} \mid \lambda)=\sum_{i=1}^{N} \alpha_{T}(i)
$$

$$
\alpha_{t+1}(j)=\left[\sum_{i=1}^{N} \alpha_{t}(i) a_{i j}\right] b_{j}\left(o_{t+1}\right), \quad 1 \leq t \leq T-1
$$

- Calculation is on the order of $N^{2} T$.

For $N=5, T=100 \Rightarrow 100 \cdot 5^{2}$ computations, instead of 10^{72}

Forward Algorithm Illustration

The Backward Algorithm

- Similarly, let us define the backward variable, $\beta_{t}(i)$, as the probability of the partial observation sequence from time $t+1$ to the end, given state s_{i} at time t and the model, i.e.

$$
\beta_{t}(i)=P\left(o_{t+1} o_{t+2} \ldots o_{T} \mid q_{t}=s_{i}, \lambda\right)
$$

- It can easily be shown that:

$$
\beta_{T}(i)=1, \quad 1 \leq i \leq N
$$

and:

$$
P(\boldsymbol{O} \mid \lambda)=\sum_{i=1}^{N} \pi_{i} b_{i}\left(o_{1}\right) \beta_{1}(i)
$$

- By induction:

$$
\beta_{t}(i)=\sum_{j=1}^{N} a_{i j} b_{j}\left(o_{t+1}\right) \beta_{t+1}(j), \quad t=T-1, T-2, \ldots, 1
$$

Backward Procedure Illustration

Finding Optimal State Sequences

- One criterion chooses states, q_{t}, which are individually most likely
- This maximizes the expected number of correct states
- Let us define $\gamma_{t}(i)$ as the probability of being in state s_{i} at time t, given the observation sequence and the model, i.e.

$$
\gamma_{t}(i)=P\left(q_{t}=s_{i} \mid \boldsymbol{O}, \lambda\right) \quad \sum_{i=1}^{N} \gamma_{t}(i)=1, \quad \forall t
$$

- Then the individually most likely state, q_{t}, at time t is:

$$
q_{t}=\underset{1 \leq i \leq N}{\operatorname{argmax}} \gamma_{t}(i) \quad 1 \leq t \leq T
$$

- Note that it can be shown that:

$$
\gamma_{t}(i)=\frac{\alpha_{t}(i) \beta_{t}(i)}{P(\boldsymbol{O} \mid \lambda)}
$$

Finding Optimal State Sequences

- The individual optimality criterion has the problem that the optimum state sequence may not obey state transition constraints
- Another optimality criterion is to choose the state sequence which maximizes $P(\boldsymbol{Q}, \boldsymbol{O} \mid \lambda)$; This can be found by the Viterbi algorithm
- Let us define $\delta_{t}(i)$ as the highest probability along a single path, at time t, which accounts for the first t observations, i.e.

$$
\delta_{t}(i)=\max _{q_{1}, q_{2}, \ldots, q_{t-1}} P\left(q_{1} q_{2} \ldots q_{t-1}, q_{t}=s_{i}, o_{1} o_{2} \ldots o_{t} \mid \lambda\right)
$$

- By induction: $\quad \delta_{t+1}(j)=\left[\max _{i} \delta_{t}(i) a_{i j}\right] b_{j}\left(o_{t+1}\right)$
- To retrieve the state sequence, we must keep track of the state sequence which gave the best path, at time t, to state s_{i}
- We do this in a separate array $\psi_{t}(i)$

The Viterbi Algorithm

1. Initialization:

$$
\begin{aligned}
\delta_{1}(i) & =\pi_{i} b_{i}\left(o_{1}\right), \quad 1 \leq i \leq N \\
\psi_{1}(i) & =0
\end{aligned}
$$

2. Recursion:

$$
\begin{array}{rlrc}
\delta_{t}(j) & =\max _{1 \leq i \leq N}\left[\delta_{t-1}(i) a_{i j}\right] b_{j}\left(o_{t}\right), & 2 \leq t \leq T & 1 \leq j \leq N \\
\psi_{t}(j) & =\underset{1 \leq i \leq N}{\operatorname{argmax}}\left[\delta_{t-1}(i) a_{i j}\right], & 2 \leq t \leq T & 1 \leq j \leq N
\end{array}
$$

3. Termination:

$$
\begin{aligned}
P^{*} & =\max _{1 \leq i \leq N}\left[\delta_{T}(i)\right] \\
q_{T}^{*} & =\underset{1 \leq i \leq N}{\operatorname{argmax}}\left[\delta_{T}(i)\right]
\end{aligned}
$$

4. Path (state-sequence) backtracking:

$$
q_{t}^{*}=\psi_{t+1}\left(q_{t+1}^{*}\right), \quad t=T-1, T-2, \ldots, 1
$$

Computation $\approx N^{2} T$

The Viterbi Algorithm: An Example

The Viterbi Algorithm: An Example (cont'd)

	0	a		$a a$		$a a b$		$a a b b$	
s_{1}	1.0	s_{1}, a	.4	s_{1}, a	.16	s_{1}, b	.016	s_{1}, b	.0016
s_{2}		.2		$s_{1}, 0$.08	$s_{1}, 0$.032	$s_{1}, 0$.0032
	.21	s_{1}, a	.084	s_{1}, b	.0144	s_{1}, b	.00032		
		s_{2}, a	.04	s_{2}, a	.042	s_{2}, b	.0168	s_{2}, b	.00336
s_{3}	$s_{2}, 0$.02	$s_{2}, 0$.021	$s_{2}, 0$.0084	$s_{2}, 0$.00168	$s_{2}, 0$
				.000336					
		s_{2}, a	.03	s_{2}, a	.0315	s_{2}, b	.0294	s_{2}, b	.00588

Matching Using Forward-Backward Algorithm

Baum-Welch Re-estimation

- Baum-Welch re-estimation uses EM to determine ML parameters
- Define $\xi_{t}(i, j)$ as the probability of being in state s_{i} at time t and state s_{j} at time $t+1$, given the model and observation sequence

$$
\xi_{t}(i, j)=P\left(q_{t}=s_{i}, q_{t+1}=s_{j} \mid \boldsymbol{O}, \lambda\right)
$$

- Then:

$$
\begin{aligned}
\xi_{t}(i, j) & =\frac{\alpha_{t}(i) a_{i j} b_{j}\left(o_{t+1}\right) \beta_{t+1}(j)}{P(\boldsymbol{O} \mid \lambda)} \\
\gamma_{t}(i) & =\sum_{j=1}^{N} \xi_{t}(i, j)
\end{aligned}
$$

- Summing $\gamma_{t}(i)$ and $\xi_{t}(i, j)$, we get:

$$
\begin{aligned}
& \sum_{t=1}^{T-1} \gamma_{t}(i)=\text { expected number of transitions from } s_{i} \\
& \sum_{t=1}^{T-1} \xi_{t}(i, j)=\text { expected number of transitions from } s_{i} \text { to } s_{j}
\end{aligned}
$$

Baum-Welch Re-estimation Procedures

Baum-Welch Re-estimation Formulas

$\bar{\pi}=$ expected number of times in state s_{i} at $t=1$
$=\gamma_{1}(i)$

$$
\begin{aligned}
\bar{a}_{i j} & =\frac{\text { expected number of transitions from state } s_{i} \text { to } s_{j}}{\text { expected number of transitions from state } s_{i}} \\
& =\frac{\sum_{t=1}^{T-1} \xi_{t}(i, j)}{\sum_{t=1}^{T-1} \gamma_{t}(i)}
\end{aligned}
$$

$\bar{b}_{j}(k)=\frac{\text { expected number of times in state } s_{j} \text { with symbol } v_{k}}{\text { expected number of times in state } s_{j}}$

$$
\frac{\sum_{\substack{i=k_{t}}}^{T} y_{t}(j)}{\sum_{i=1}^{T} y_{t}(j)}
$$

Baum-Welch Re-estimation Formulas

- If $\lambda=(\boldsymbol{A}, \boldsymbol{B}, \pi)$ is the initial model, and $\bar{\lambda}=(\overline{\boldsymbol{A}}, \overline{\boldsymbol{B}}, \bar{\pi})$ is the re-estimated model. Then it can be proved that either:

1. The initial model, λ, defines a critical point of the likelihood function, in which case $\bar{\lambda}=\lambda$, or
2. Model $\bar{\lambda}$ is more likely than λ in the sense that $P(\boldsymbol{O} \mid \bar{\lambda})>P(\boldsymbol{O} \mid \lambda)$, i.e., we have found a new model $\bar{\lambda}$ from which the observation sequence is more likely to have been produced.

- Thus we can improve the probability of \boldsymbol{O} being observed from the model if we iteratively use $\bar{\lambda}$ in place of λ and repeat the re-estimation until some limiting point is reached. The resulting model is called the maximum likelihood HMM.

Multiple Observation Sequences

- Speech recognition typically uses left-to-right HMMs. These HMMs can not be trained using a single observation sequence, because only a small number of observations are available to train each state. To obtain reliable estimates of model parameters, one must use multiple observation sequences. In this case, the re-estimation procedure needs to be modified.
- Let us denote the set of K observation sequences as

$$
\boldsymbol{O}=\left\{\boldsymbol{O}^{(1)}, \boldsymbol{O}^{(2)}, \ldots, \boldsymbol{O}^{(K)}\right\}
$$

where $\boldsymbol{O}^{(k)}=\left\{o_{1}^{(k)}, o_{2}^{(k)}, \ldots, o_{T_{k}}^{(k)}\right\}$ is the k-th observation sequence.

- Assume that the observations sequences are mutually independent, we want to estimate the parameters so as to maximize

$$
P(\boldsymbol{O} \mid \lambda)=\prod_{k=1}^{K} P\left(\boldsymbol{O}^{(k)} \mid \lambda\right)=\prod_{k=1}^{K} P_{k}
$$

Multiple Observation Sequences (cont'd)

- Since the re-estimation formulas are based on frequency of occurrence of various events, we can modify them by adding up the individual frequencies of occurrence for each sequence

$$
\begin{aligned}
& \bar{a}_{i j}=\frac{\sum_{k=1}^{K} \sum_{t=1}^{T_{k}-1} \xi_{t}^{k}(i, j)}{\sum_{k=1}^{K} \sum_{t=1}^{T_{k}-1} \gamma_{t}^{k}(i)}=\frac{\sum_{k=1}^{K} \frac{1}{P_{k}} \sum_{t=1}^{T_{k}-1} \alpha_{t}^{k}(i) a_{i j} b_{j}\left(o_{t+1}^{(k)}\right) \beta_{t+1}^{k}(j)}{\sum_{k=1}^{K} \frac{1}{P_{k}} \sum_{t=1}^{T_{k}-1} \alpha_{t}^{k}(i) \beta_{t}^{k}(i)} \\
& \bar{b}_{j}(l)=\frac{\sum_{k=1}^{K} \sum_{\substack{t=1 \\
o_{t}^{k}=v_{e}}}^{T_{k}} \gamma_{t}^{k}(j)}{\sum_{k=1}^{K} \sum_{t=1}^{T_{k}} \gamma_{t}^{k}(j)}=\frac{\sum_{k=1}^{K} \frac{1}{P_{k}} \sum_{\substack{t=1 \\
o_{t}^{k}=v_{k}}}^{T_{k}} \alpha_{t}^{k}(i) \beta_{t}^{k}(i)}{\sum_{k=1}^{K} \frac{1}{P_{k}} \sum_{t=1}^{T_{k}} \alpha_{t}^{k}(i) \beta_{t}^{k}(i)}
\end{aligned}
$$

Phone-based HMMs

- Word-based HMMs are appropriate for small vocabulary speech recognition. For large vocabulary ASR, sub-word-based (e.g., phone-based) models are more appropriate.

SUB-WORD UNIT

(b)

Phone-based HMMs (cont'd)

- The phone models can have many states, and words are made up from a concatenation of phone models.

SENTENCE $\left(\mathrm{S}_{\mathrm{W}}\right)$: SHOW ALL ALERTS

WORDS:

SILENCE:

COMPOSITE FSN:

Continuous Density Hidden Markov Models

- A continuous density HMM replaces the discrete observation probabilities, $b_{j}(k)$, by a continuous PDF $b_{j}(\boldsymbol{x})$
- A common practice is to represent $b_{j}(\boldsymbol{x})$ as a mixture of Gaussians:

$$
b_{j}(\boldsymbol{x})=\sum_{k=1}^{M} c_{j k} N\left[\boldsymbol{x}, \mu_{j k}, \boldsymbol{\Sigma}_{j k}\right] \quad 1 \leq j \leq N
$$

where $c_{j k}$ is the mixture weight

$$
c_{j k} \geq 0 \quad\left(1 \leq j \leq N, 1 \leq k \leq M, \text { and } \sum_{k=1}^{M} c_{j k}=1,1 \leq j \leq N\right),
$$

N is the normal density, and
$\mu_{j k}$ and $\boldsymbol{\Sigma}_{j k}$ are the mean vector and covariance matrix associated with state j and mixture k.

Acoustic Modelling Variations

- Semi-continuous HMMs first compute a VQ codebook of size M
- The VQ codebook is then modelled as a family of Gaussian PDFs
- Each codeword is represented by a Gaussian PDF, and may be used together with others to model the acoustic vectors
- From the CD-HMM viewpoint, this is equivalent to using the same set of M mixtures to model all the states
- It is therefore often referred to as a Tied Mixture HMM
- All three methods have been used in many speech recognition tasks, with varying outcomes
- For large-vocabulary, continuous speech recognition with sufficient amount (i.e., tens of hours) of training data, CD-HMM systems currently yield the best performance, but with considerable increase in computation

Implementation Issues

- Scaling: to prevent underflow
- Segmental K-means Training: to train observation probabilities by first performing Viterbi alignment
- Initial estimates of λ : to provide robust models
- Pruning: to reduce search computation
- X. Huang, A. Acero, and H. Hon, Spoken Language Processing, Prentice-Hall, 2001.
- F. Jelinek, Statistical Methods for Speech Recognition. MIT Press, 1997.
- L. Rabiner and B. Juang, Fundamentals of Speech Recognition, Prentice-Hall, 1993.

