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Statistical Pattern Classification


◆	 Given data X, find which of a number of classes C1, C2,…CN it 
belongs to, based on known distributions of data from C1, C2, etc. 

◆ Bayesian Classification: 
Class = Ci : i = argmaxj P(Cj)P(X|Cj) 

a priori probability of Cj Probability of X as given by 

the probability distribution of Cj 

◆ The a priori probability accounts for the relative proportions of the 
classes 

●	 If you never saw any data, you would guess the class based on these 
probabilities alone 

◆ P(X|Cj) accounts for evidence obtained from observed data X 

6.345 Automatic Speech Recognition  Designing HMM-based speech recognition systems 3 



Statistical Classification of Isolated Words


◆ Classes are words 
◆ Data are instances of isolated spoken words 

●	 Sequence of feature vectors derived from speech signal, typically 1 vector from a 
25ms frame of speech, with frames shifted by 10ms. 

◆ Bayesian classification: 
Recognized_Word = argmaxword P(word)P(X| word) 

◆ P(word) is a priori probability of word 
● Obtained from our expectation of the relative frequency of occurrence of the word 

◆ P(X|word) is the probability of X computed on the probability distribution function of word 
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Computing P(X|word)


◆ To compute P(X|word), there must be a statistical distribution for X 
corresponding to word 

● Each word must be represented by some statistical model. 

◆ We represent each word by an HMM 
●	 An HMM is really a graphical form of probability density function for 

time-varying data 

non-emitting absorbing 
state 

� Each state has a probability distribution function 

� Transitions between states are governed by transition probabilities 

�	 At each time instant the model is in some state, and it emits one observation 
vector from the distribution associated with that state 

6.345 Automatic Speech Recognition  Designing HMM-based speech recognition systems 5 



Computing P(X|word)


◆ The actual state sequence that generated X is never known. 
● P(X|word) must therefore consider all possible state sequences. 

P( X | word ) = ∑ P( X , s | word ) 
s∈{all state sequences} 

��� ���������������� 
������������������ 
����������������� 
��������������� 
��������������������� 

6.345 Automatic Speech Recognition  Designing HMM-based speech recognition systems 6 



Computing P(X|word)


◆ The actual state sequence that generated X is never known. 
● P(X|word) must therefore consider all possible state sequences. 

P( X | word ) = ∑ P( X , s | word ) 
s∈{all state sequences} 

◆ The actual number of state sequences can be very large 
● Cannot explicitly sum over all state sequences 

◆	 P(X|word) can however be efficiently calculated using the 
forward recursion 

α (s, t | word ) = ∑α (s’, t −1| word )P(s | s’)P( X t | s) 
s’ 

����������������������������������������������������������� ����������
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Computing P(X|word)


◆ The forward recursion


α (s3,4 | word )

)|5,( 3 wordsα ������������������������� 

�������������������������� 
�� ��������� 

sterminal 

)|4,( 2 wordsα


s3


s2


s1


Time  =1 2 3 4 5 6
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Computing P(X|word)


◆	 The total probability of X, including the contributions of 
all state sequences, is the forward probability at the final 
non-emitting node 

P( X | word ) = α (sterminal ,T | word ) 

sterminal 

s3


s2


s1


Time  =1 2 3 4 5 6 
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Decoding isolated words




Classifying between two words: Odd and Even�

HMM for Odd HMM for Even 

P(Odd)P(X|Odd) P(Even)P(X|Even) 

P(Odd) P(Even) 
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Classifying between Odd and Even�

P(Odd)P(X|Odd)


P(Odd)


P(Even)P(X|Even) 

P(Even) 
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Decoding to classify between Odd and Even�

◆ Approximate total probability of all paths with probability of best path 
● Computations can be done in the log domain. Only additions and comparisons are required 

� Cheaper than full-forward where multiplications and additions are required 

Score(X|Odd)


P(Odd)


Score(X|Even) 

P(Even) 
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Computing Best Path Scores for Viterbi Decoding


◆ The approximate score for a word is 

P( X | word ) ≈ max s∈{all state sequences}{P( X , s | word )} 

◆ Written explicity 

P( X 1..X t | word ) ≈ max s1 ,s2

�������������� 

,...,sT 
{π (s1)P( X 1 | s1)P(s2 | s1)P( X 2 | s2 )....P(sT | sT −1)P( XT | sT )} 

◆ The word score can be be recursively computed using the Viterbi algorithm 

s P (t) = max s’{Ps’(t −1)P(s | s’)P( X t | s)} 

����������������������� ����������������������� 
����������������������� ����������������������� 
���������� ��������� ����������� ����������� 
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Computing Best Path Scores for Viterbi Decoding


◆ The forward recursion


Ps3 
(5) = max{ Ps3 (4)P(s3 | s3 )P( X 5 | s3 ) , Ps2

(4)P(s3 | s2 )P( X 5 | s3 )} 

)4(
3s P 

sterminal 

)4(
2s P 

��������������� 

s3


s2


s1


Time  =1 2 3 4 5 6
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Computing Best Path Scores for Viterbi Decoding


◆ The forward recursion is termed Viterbi decoding 
● The terminology is derived from decoding of error correction codes 

◆	 The score for the word is the score of the path that wins through to the 
terminal state 

● We use the term score to distinguish it from the total probability of the word 

Score( X | word ) = Psterminal 
(T ) 

s3 

s2 

s1 

sterminal 

Time  =1 2 3 4 5 6 
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Decoding to classify between Odd and Even�

◆ Compare scores (best state sequence probabilities) of all competing words


Score(X|Odd)


P(Odd)


Score(X|Even) 

P(Even) 
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Decoding word sequences




Statistical Classification of Word Sequences


◆ Classes are word sequences

◆ Data are spoken recordings of word sequences


◆ Bayesian classification: 

word1, word2 ,..., wordN = 
arg maxwd1 ,wd2 ,...,wd N 

{P( X | wd1, wd2 ,..., wdN )P(wd1, wd2 ,..., wdN )} 

◆	 P(wd1,wd2,wd3..) is a priori probability of word sequence 
wd1,wd2,wd3.. 

● Obtained from a model of the language 

◆	 P(X| wd1,wd2,wd3..) is the probability of X computed on the probability 
distribution function of the word sequence wd1,wd2,wd3.. 

● HMMs now represent probability distributions of word sequences 
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Constructing HMMs for word sequences


◆ Conacatenate HMMs for each of the words in the sequence 

HMM for word 1 HMM for word2 

Combined HMM for the sequence word 1 word 2 

◆ In fact, word HMMs themselves are frequently constructed by 
concatenating HMMs for phonemes 

●	 Phonemes are far fewer in number than words, and occur more frequently 
in training data 

●	 Words that were never seen in the training data can be constructed from 
phoneme HMMs 
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Bayesian Classification between word sequences


◆ Classifying an utterance as either “Rock Star” or “Dog Star” 
◆ Must compare P(Rock,Star)P(X|Rock Star) with P(Dog,Star)P(X|Dog Star) 

R
oc

k 

P(Star|Rock) P(R k,Star)P(X|Rock Star)

S
ta

r 

oc 

D
og

 
S

ta
r 

P(Star|Dog) P(Dog,Star)P(X|Dog Star) 

P(Rock) P(Dog) 

6.345 Automatic Speech Recognition  Designing HMM-based speech recognition systems 21 



Bayesian Classification between word sequences

P(Rock,Star)P(X|Rock Star) 

R
oc

k 
S

ta
r 

D
og

 
S

ta
r 

P(Dog,Star)P(X|Dog Star)
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Decoding word sequences

Score(X|Dog Star)


R
oc

k 
S

ta
r 

D
og

 
S

ta
r 

Score(X|Rock Star)


Approximate total probability

with best path score
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Decoding word sequences

R

oc
k 

S
ta

r 
D

og
 

S
ta

r 

The best path through 
Dog Star lies within the 
dotted portions of the trellis 

There are four transition 
points from Dog to Star in 
this trellis 

There are four different sets 
paths through the dotted 

trellis, each with its own 
best path 
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Decoding word sequences


SET 1 and its best path


R
oc

k 
S

ta
r 

D
og

 
S

ta
r 

dogstar1 

The best path through 
Dog Star lies within the 
dotted portions of the trellis 

There are four transition 
points from Dog to Star in 
this trellis 

There are four different sets 
paths through the dotted 

trellis, each with its own 
best path 
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Decoding word sequences


SET 2 and its best path


R
oc

k 
S

ta
r 

D
og

 
S

ta
r 

dogstar2 

The best path through 
Dog Star lies within the 
dotted portions of the trellis 

There are four transition 
points from Dog to Star in 
this trellis 

There are four different sets 
paths through the dotted 

trellis, each with its own 
best path 
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Decoding word sequences


SET 3 and its best path


R
oc

k 
S

ta
r 

D
og

 
S
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r 

dogstar3 

The best path through 
Dog Star lies within the 
dotted portions of the trellis 

There are four transition 
points from Dog to Star in 
this trellis 

There are four different sets 
paths through the dotted 

trellis, each with its own 
best path 
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Decoding word sequences


SET 4 and its best path


R
oc

k 
S

ta
r 

D
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S
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r 

dogstar4 

The best path through 
Dog Star lies within the 
dotted portions of the trellis 

There are four transition 
points from Dog to Star in 
this trellis 

There are four different sets 
paths through the dotted 

trellis, each with its own 
best path 
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Decoding word sequences

R

oc
k 

S
ta

r 
D

og
 

S
ta

r 

The best path through 
Dog Star is the best of 
the four transition-specific 
best paths


max(dogstar) = 
max ( dogstar1, dogstar2, 

dogstar3, dogstar4 )


6.345 Automatic Speech Recognition  Designing HMM-based speech recognition systems 29 



Decoding word sequences

R

oc
k 

S
ta

r 
D

og
 

S
ta

r 

Similarly, for Rock Star

the best path through 
the trellis is the best of 
the four transition-specific 
best paths 

max(rockstar) = 
max ( rockstar1, rockstar2, 

rockstar3, rockstar4 ) 
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Decoding word sequences

R

oc
k 

S
ta

r 
D

og
 

S
ta

r 

Then we’d compare the 
best paths through 
Dog Star and Rock Star 

max(dogstar) = 
max ( dogstar1, dogstar2, 

dogstar3, dogstar4 ) 

max(rockstar) = 
max ( rockstar1, rockstar2, 

rockstar3,  rockstar4 ) 

Viterbi = 
max(max(dogstar), 

max(rockstar) ) 
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Decoding word sequences

R

oc
k 

S
ta

r 
D

og
 

S
ta

r 

argmax is commutative:


max(max(dogstar), max(rockstar) )

= 

max ( 


max(dogstar1, rockstar1 ), 
max (dogstar2, rockstar2 ), 
max (dogstar3,rockstar3), 
max(dogstar4,rockstar4 ) 

) 
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Decoding word sequences


t1


R
oc

k 
S

ta
r 

D
og

 
S

ta
r 

For a given entry point 
the best path through STAR 
is the same for both trellises 

We can choose between 
Dog and Rock right here 
because the futures of these 
paths are identical 
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Decoding word sequences

R

oc
k 

S
ta

r 
D

og
 

S
ta

r 

We select the higher scoring 
of the two incoming edges 
here 

t1 

This portion of the 
trellis is now deleted 
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Decoding word sequences

R

oc
k 

D
og

 
S

ta
r 

Similar logic can be applied 
at other entry points to 
Star 

This copy of the trellis 
for STAR is completely 
removed 
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Decoding word sequences


◆ The two instances of Star can be collapsed into one to form a smaller trellis 
o	 This is possible because we are decoding based on best path score, instead of full forward 

score 

R
oc

k 
D

og
 

S
ta

r 

We can only do Viterbi 
decoding on this collapsed 
graph. 
Full forward decoding is no 
longer possible 
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Extending paths through the trellis:

Breadth First vs. Depth First Search




Breadth First Search


time

st

at
es
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Breadth First Search


time

st

at
es
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Depth First Search


time

st

at
es
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Depth First Search


time

st

at
es




6.345 Automatic Speech Recognition  Designing HMM-based speech recognition systems 41




Depth First Search


st
at

es



time 

? 

� No inconsistencies arise if path scores change monotonically with increasing 
path length 
� This can be guaranteed by normalizing all state output density values for a 
vector at a time t with respect to the highest valued density at t. 
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Designing optimal graph structures for the 
language HMM 



Language HMMs for fixed-length word sequences

R

oc
k 

D
og

 
S

ta
r 

����������������������
����������������������
���������������������������
�������

Rock Dog Star 

Rock 

Dog 

Star= 
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Language HMMs for fixed-length word sequences

E

ac
h 

w
or

d 
is

 a
n 

H
M

M
 

P(Rock) 

P(Dog) 

P(Star|Rock) 

P(Star|Dog) 

◆ The word graph represents all allowed word sequences in our example 
● The set of all allowed word sequences represents the allowed “language” 

◆	 At a more detailed level, the figure represents an HMM composed of the 
HMMs for all words in the word graph 

● This is the “Language HMM” – the HMM for the entire allowed language 

◆ The language HMM represents the vertical axis of the trellis 
● It is the trellis, and NOT the language HMM, that is searched for the best path 
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Language HMMs for fixed-length word sequences

E

ac
h 

w
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d 
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n 

H
M
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◆ Recognizing one of four lines from “charge of the light brigade” 

����������������������� 

���������������������� 

����������������������� 

������������������ 

P(of|cannon to right) 
P(them|cannon to right of) 

to 

of 

Cannon 

them 

right 

left 

frontin 

behind 

P(cannon) 

P(to|cannon) 

P(right|cannon to) 

P(in|cannon) 

P(behind|cannon) 

P(of|cannon to left) 

P(them|cannon in front of) 

them 

of 

of them 

them 

P(front|cannon in) 
P(of|cannon in front) 

P(them|cannon to left of) 

P(left|cannon to) 

P(them|cannon behind)
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Simplification of the language HMM through lower context 
language models 

E
ac

h 
w

or
d 

is
 a

n 
H

M
M

 

◆ Recognizing one of four lines from “charge of the light brigade” 

◆	 If the probability of a word only depends on the preceding word, the graph 
can be collapsed: 

● e.g. P(them | cannon to right of) = P(them | cannon to left of) = P(cannon | of) 

to 

ofCannon them 

right 

left 

frontin 

behind 

P(cannon) 

P(to | cannon) 

P(right | to) 

P(in | cannon) 

P(behind | cannon) 

P(of | right) 

P(of | left) 

P(them | of) 

P(them|behind) 
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Refactored recognition problem for language HMMs which 
incorporate with lower context language models 

◆ Our new statement of the problem with a smaller language model requirement: 

word1,word2,… = 
argmaxwd

1
,wd

2
…{argmaxs

1
,s

2
,…,s

T

P(wd1,wd2,…)P(X1,X2,..XT,s1,s2,…,sT|wd1,wd2,…)} 

◆ The probability term can be factored into individual words as 
P(wd1)P(Xwd1,Swd1|wd1).P(wd2|wd1)P(Xwd2,Swd2|wd2). 

P(wd3|wd1,wd2)P(Xwd3,Swd3 |wd3)…P(wdN|wd1...wdN-1)P(XwdN,SwdN|wdN) 

◆ Assume contexts beyond a given length K do not matter 
P(wdN| wdN-1, wdN-2, .., wdN-K, .., wd1) = P(wdN-| wdN-1, wdN-2,.., wdN-K) 

◆ Nodes with the same word history wdN-1, wdN-2,.., wdN-K can be collapsed 
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Language HMMs for fixed-length word sequences: based on a 
grammar for Dr. Seuss 

freezy 

breeze 

made 

these 

trees 

freeze 

three trees 

trees’ cheese 

E
ac

h 
w

or
d 

is
 a

n 
H

M
M

 

6.345 Automatic Speech Recognition  Designing HMM-based speech recognition systems 49




Language HMMs for fixed-length word sequences: command and 
control grammar 

delete 

file 

all 
files 

open 

edit 

close 
marked 

E
ac

h 
w

or
d 

is
 a

n 
H

M
M
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���� 

�� 

Language HMMs for arbitrarily long word sequences


◆ Previous examples chose between a finite set of known word sequences 
◆ Word sequences can be of arbitrary length 

●	 E.g. set of all word sequences that consist of an arbitrary number of 
repetitions of the word bang 

��������� 
�������������� 
������������������� 

● Forming explicit word-sequence graphs of the type we’ve seen so far is not 
possible 
�	 The number of possible sequences (with non-zero a-priori probability) is 

potentially infinite 
� Even if the longest sequence length is restricted, the graph will still be large 
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Language HMMs for arbitrarily long word sequences

E

ac
h 

w
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n 

H
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X 
◆	 Arbitrary word sequences can be 

modeled with loops under some 
assumptions. E.g.: 

◆ A “bang” can be followed by another 
“bang” with probability P(“bang”). X 

● P(“bang”) = X; P(Termination) = 1-X; 

◆	 Bangs can occur only in pairs with 
probability X 

◆ A more complex graph allows more X 
complicated patterns 

◆ You can extend this logic to other 
vocabularies where the speaker says 
more things than “bang” 1-Y 

● e.g. “bang bang you’re dead” 

���� 
1-X 

���� 
1-X 

���� 

���� 
1-X 

���� 
Y 
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Language HMMs for arbitrarily long word sequences


◆	 Constrained set of word sequences with constrained 
vocabulary are realistic 

● Typically in command-and-control situations 
� Example: operating TV remote 

● Simple dialog systems 
� When the set of permitted responses to a query is restricted 

◆ Unconstrained length word sequences : NATURAL 
LANGUAGE 

● State-of-art large vocabulary decoders 
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Language HMMs for Natural language: with unigram 
representations 

◆ A bag of words model: 
● Any word is possible after any word. 
● The probability of a word is independent of the words preceding or succeeding it. 
● Also called a UNIGRAM model. 

P(Star) = P(Star | Dog) = P(Star | Rock) = P(Star | When you wish upon a)


P(When you wish upon a star) = 

P(When) P(you) P(wish) P(upon) P(a) P(star) P(END)


◆ “END” is a special symbol that indicates the end of the word sequence 

◆ P(END) is necessary – without it the word sequence would never terminate 
● The total probability of all possible word sequences must sum to 1.0 
● Only if P(END) is explicitly defined will the total probability = 1.0 
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Language HMMs for Natural language: example of a graph which 
uses unigram representations 

E
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w
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◆ Vocabulary: “fox”, “sox”, “knox”, “box” 
◆	 Arbitrary length sequences of arbitrary arrangements of 

these four words. 
◆ Actual probabilities: 

● P(fox), P(sox), P(knox), P(box), P(END) 
● P(fox) + P(sox) + P(knox) + P(box) + P(END) = 1.0 

P(END)


begin end 

Fox 

Sox 

Knox 

Box 

P(Fox) 

P(Sox) 

P(Knox) 

P(Box) P(END) 

•The black dots are “non-emitting” states that are not associated with observations

6.345 Automatic Speech Recognition  Designing HMM-based speech recognition systems 55 



Language HMMs for Natural language: bigram representations


◆ A unigram model is only useful when no statistical dependency 
between adjacent words can be assumed 

● Or, alternately, when the data used to learn these dependencies are too 
small to learn them reliably 
� Learning word dependencies: Later in the program 

◆	 In natural language, the probability of a word occurring depends on 
past words. 

◆	 Bigram language model: the probability of a word depends on the 
previous word 

◆ P(Star | A Rock) = P(Star | The Rock) = P(Star | Rock) 

◆ P(Star | Rock) is not required to be equal to P(Star | Dog) 
● In fact the two terms are assumed to be unrelated. 
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Language HMMs for Natural language: bigram representations


◆ Simple bigram example: 
● Vocabulary:  START, “odd”, “even”, END 
● P(odd | START) = a, P(even | START) = b, P(END | START) = c 

� a+b+c = 1.0 

● P(odd | even) = d, P(even | even) = e, P(END | even) = f 
� d+e+f = 1.0 

● P(odd | odd) = g, P(even | odd) = h, P(END | odd) = i 
� g+h+i = 1.0 

◆ START is a special symbol, indicating the beginning of the utterance 
● P(word | START) is the probability  that the utterance begins with word 
●	 Prob(“odd even even odd”) = 

P(odd | START) P(even | odd) P(even | even) P (odd | even) P(END | odd) 

◆ Can be shown that the total probability of all word sequences of all 
lengths is 1.0 

●	 Again, the definition of START and END symbols, and all bigrams 
involving the two, is crucial 
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Language HMMs for Natural language: building graphs to 
incorporate bigram representations 
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◆ Edges from “START” contain START dependent word probabilities 

◆ Edges from “Even” contain “Even” dependent word probabilities 

◆ Edges from “Odd” contain “Odd” dependent word probabilities 

P(Odd | Odd) = g 

START END 

ODD 

EVEN 

a 

b 

c 
d 

f 

P(Even | Odd) = h 

P(END| Odd) = i 

e 
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Language HMMs for Natural language: building graphs to 
incorporate bigram representations 

bigram loop


bigram initialization 
Wa 

Wb 

Wc 

Wd 

termination 

P(Wd|Wa) 

P(Wc|Wa) 

P(Wb|Wa) 

P(Wa|Wa) 

P(Wa|START) 

P(END|Wa) 
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Language HMMs for Natural language: trigram representations


◆	 Assumption: The probability of a word depends on the two preceding 
words 
P(waltzing | you’ll come a) = P(waltzing | who’ll come a) = 

P(waltzing | come a) 

P(you’ll come a waltzing matilda with me) = 
P(you’ll | START) * P(come | START you’ll)  * 
P(a | you’ll come) * P(waltzing | come a) * 
P(matilda | a waltzing) * P(with | waltzing matilda) * 
P(me | matilda with) *  P(END | with me) 

◆ For any word sequence w1,w2,w3,w4,w5….wN 

◆ P(w1,w2…wN) = P(w1|START) P(w2 | START w1) P(w3 | w1 w2) … 
P(END | wN-1 wN) 

●	 Note that the FIRST term P(w1 | START) is a bigram term. All the rest 
are trigrams. 
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Language HMMs for Natural language: building graphs to 
incorporate trigram representations 

the 

START END 
rock 

star 

P(END | START) 

P(the | START the) 
This is wrong! This would apply the probability 
P(the | START the) to instances of “the the the” 
(for which the correct probability value is 
P(the | the the) 

◆ Explanation with example: three word vocabulary “the”, “rock”, “star” 
● The graph initially begins with bigrams of START, since nothing 

precedes START 
● Trigrams of “START the”.. 
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P(star | START)
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Language HMMs for Natural language: building graphs to 
incorporate trigram representations 

◆ Explanation with example: three words vocab “the”, “rock” , “star” 
● The graph initially begins with bigrams of START, since nothing 

precedes START 
● Trigrams for all “START word” sequences 

�	 A new instance of every word is required to ensure that the two preceding 
symbols are “START word” 

the 

START 
rock 

star 

P(the | START the) 

P(rock | START the) 

P(the | START star) 

P(rock | START star) 

the 

rock 

star 

the 

rock 

star 

the 

rock 

star 

END 

6.345 Automatic Speech Recognition  Designing HMM-based speech recognition systems 62 



Language HMMs for Natural language: building graphs to 
incorporate trigram representations 

Designing HMM-based speech recognition systems 636.345 Automatic Speech Recognition 

the 

START 
rock 

star 

the 

rock 

star 

the 

rock 

star 

the 

rock 

star 

This always represents a partial 
sequence ending with “rock star” 

◆ Explanation with example: three words vocab “the”, “rock” , “star” 
● The graph initially begins with bigrams of START, since nothing 

precedes START 
● Each word in the second level represents a specific set of two terminal 

words in a partial word sequence 

P(star | star rock) 

P(star | rock rock) 

P(star | the rock) 
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Language HMMs for Natural language: building graphs to 
incorporate trigram representations 

6.345 Automatic Speech Recognition 

the 

START 
rock 

star 

the 

rock 

star 

the 

rock 

star 

the 

rock 

star 

◆ Explanation with example: three words vocab “the”, “rock” , “star” 
● The graph initially begins with bigrams of START, since nothing 

precedes START 
● Each word in the second level represents a specific set of two terminal 

words in a partial word sequence 
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Any edge coming out of this 
instance of STAR will have the 
word pair context “ROCK STAR” 
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Language HMMs for Natural language: building graphs to 
incorporate trigram representations 

◆ Explanation with example: three words vocab “the”, “rock” , “star” 
●	 The graph initially begins with bigrams of START, since nothing 

precedes START 
● Each word in the second level represents a specific set of two terminal 

6.345 Automatic Speech Recognition  

the 

START 
rock 

star 

the 

rock 

star 

the 

rock 

star 

the 

rock 

star 

words in a partial word sequence 

This STAR has input from 
“the” and “rock”. 

WRONG 

Edges coming out of this wrongly 
connected STAR could have word 
pair contexts that are either 
“THE STAR” or “ROCK STAR”. 

This is amibiguous. A word cannot 
have incoming edges from two or 
more different words 
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Language HMMs for Natural language: building graphs to 
incorporate trigram representations 

Wij is an HMM for word 
Wi that can only be 
accessed from HMMs for 
word Wj. E.g. W12 is the 
HMM for word W1 that 
can only be used 
when the previous word 
was W2 

bigram 
initialization 

trigram 
loop 

W14 

W13 

… 
W22 

W11 

W21 

W31 

W41 

W12 

… 

… 

W1 

W2 

W3 

W4 

termination 

<s> 
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Language HMMs for Natural language: Generic N-gram 
representations 

◆ The logic can be extended 

◆ A trigram decoding structure for a vocabulary of D words 
needs D word instances at the first level and D2 word 
instances at the second level 

● Total of D(D+1) word models must be instantiated 

● Other, more expensive structures are also possible 

◆ An N-gram decoding structure will need 
● D + D2 +D3… DN-1 word instances 

●	 Arcs must be incorporated such that the exit from a word instance 
in the (N-1)th level always represents a word sequence with the 
same trailing sequence of N-1 words 
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Next Class


◆	 How the use of sub-word units complicates the structure 
of language HMMs in decoders 
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