Part I: Designing HMM-based ASR systems

Rita Singh

School of Computer Science Carnegie Mellon University

Table of contents

- Isolated word recognition
- Bayesian Classification
- Decoding based on best state sequences
- Word sequence recognition
- Bayesian Classification
- Decoding based on best state sequences
- Best path decoding and collapsing graphs
- Optimal graph structures
- Constrained language decoding
- Natural language decoding
- HMMs for the language
- Unigram
- Bigram
- trigram
- Search strategies
- Depth first
- Breadth first

Statistical Pattern Classification

- Given data X, find which of a number of classes $\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots \mathrm{C}_{\mathrm{N}}$ it belongs to, based on known distributions of data from $\mathrm{C}_{1}, \mathrm{C}_{2}$, etc.
- Bayesian Classification:

- The a priori probability accounts for the relative proportions of the classes
- If you never saw any data, you would guess the class based on these probabilities alone
- $\mathrm{P}\left(X \mid \mathrm{C}_{j}\right)$ accounts for evidence obtained from observed data X

Statistical Classification of Isolated Words

- Classes are words
- Data are instances of isolated spoken words
- Sequence of feature vectors derived from speech signal, typically 1 vector from a 25 ms frame of speech, with frames shifted by 10 ms .
- Bayesian classification:

Recognized_Word $=\operatorname{argmax}_{\text {word }} \mathrm{P}($ word $) \mathrm{P}(X \mid$ word $)$

- $\mathrm{P}($ word $)$ is a priori probability of word
- Obtained from our expectation of the relative frequency of occurrence of the word
- $\mathrm{P}(X \mid$ word $)$ is the probability of X computed on the probability distribution function of word

Computing $\mathrm{P}(X \mid$ word $)$

- To compute $\mathrm{P}(X \mid$ word $)$, there must be a statistical distribution for X corresponding to word
- Each word must be represented by some statistical model.
- We represent each word by an HMM
- An HMM is really a graphical form of probability density function for time-varying data

Each state has a probability distribution function
T Transitions between states are governed by transition probabilities
\square At each time instant the model is in some state, and it emits one observation vector from the distribution associated with that state

Computing $\mathrm{P}(X \mid$ word $)$

- The actual state sequence that generated X is never known.
- $\mathrm{P}(X \mid$ word $)$ must therefore consider all possible state sequences.

$$
P(X \mid \text { word })=\sum_{s \in\{\text { all states squenees }\}} P(X, s \mid \text { word })
$$

The probabilities of all possible state sequences must be added to obtain the total probability

Computing $\mathrm{P}(X \mid$ word $)$

- The actual state sequence that generated X is never known.
- $\mathrm{P}(X \mid$ word $)$ must therefore consider all possible state sequences.

$$
P(X \mid \text { word })=\sum_{s \in\{\text { all state sequences }\}} P(X, s \mid \text { word })
$$

- The actual number of state sequences can be very large
- Cannot explicitly sum over all state sequences
- $\mathrm{P}(X \mid$ word $)$ can however be efficiently calculated using the forward recursion

$$
\alpha(s, t \mid \text { word })=\sum_{s^{\prime}} \alpha\left(s^{\prime}, t-1 \mid \text { word }\right) P\left(s \mid s^{\prime}\right) P\left(X_{t} \mid s\right)
$$

Total probability of all state sequences ending in state sat time t

Computing $\mathrm{P}(X \mid$ word $)$

- The forward recursion

Computing $\mathrm{P}(X \mid$ word $)$

- The total probability of X, including the contributions of all state sequences, is the forward probability at the final non-emitting node
$P(X \mid$ word $)=\alpha\left(s_{\text {terminal }}, T \mid\right.$ word $)$

Decoding isolated words

Classifying between two words: Odd and Even

HMM for Odd

HMM for Even

Classifying between Odd and Even

Decoding to classify between $O d d$ and Even

- Approximate total probability of all paths with probability of best path
- Computations can be done in the log domain. Only additions and comparisons are required
- Cheaper than full-forward where multiplications and additions are required

Computing Best Path Scores for Viterbi Decoding

- The approximate score for a word is

$$
P(X \mid \text { word }) \approx \max _{s \in\{\text { all state sequences }\}}\{P(X, s \mid \text { word })\}
$$

- Written explicity

$$
P\left(X_{1} . . X_{t} \mid \text { word }\right) \approx \max _{s_{1}, s_{2} \underbrace{}_{\text {state }} \ldots s_{T}}\left\{\pi\left(s_{1}\right) P\left(X_{1} \mid s_{1}\right) P\left(s_{2} \mid s_{1}\right) P\left(X_{2} \mid s_{2}\right) \ldots . . . P\left(s_{T} \mid s_{T-1}\right) P\left(X_{T} \mid s_{T}\right)\right\}
$$

- The word score can be be recursively computed using the Viterbi algorithm

Computing Best Path Scores for Viterbi Decoding

- The forward recursion

Computing Best Path Scores for Viterbi Decoding

- The forward recursion is termed Viterbi decoding
- The terminology is derived from decoding of error correction codes
- The score for the word is the score of the path that wins through to the terminal state
- We use the term score to distinguish it from the total probability of the word

Decoding to classify between $O d d$ and Even

- Compare scores (best state sequence probabilities) of all competing words

Decoding word sequences

Statistical Classification of Word Sequences

- Classes are word sequences
- Data are spoken recordings of word sequences
- Bayesian classification:
word $_{1}$, word $_{2}, \ldots$, word $_{N}=$ $\arg \max _{w d_{1}, w d_{2}, \ldots, w d_{N}}\left\{P\left(X \mid w d_{1}, w d_{2}, \ldots, w d_{N}\right) P\left(w d_{1}, w d_{2}, \ldots, w d_{N}\right)\right\}$
- $\mathrm{P}\left(w d_{1}, w d_{2}, w d_{3} ..\right)$ is a priori probability of word sequence $w d_{1}, w d_{2}, w d_{3}$.
- Obtained from a model of the language
- $\mathrm{P}\left(X \mid w d_{l}, w d_{2}, w d_{3 . .}\right)$ is the probability of X computed on the probability distribution function of the word sequence $w d_{1}, w d_{2}, w d_{3}$.
- HMMs now represent probability distributions of word sequences

Constructing HMMs for word sequences

- Conacatenate HMMs for each of the words in the sequence

- In fact, word HMMs themselves are frequently constructed by concatenating HMMs for phonemes
- Phonemes are far fewer in number than words, and occur more frequently in training data
- Words that were never seen in the training data can be constructed from phoneme HMMs

Bayesian Classification between word sequences

- Classifying an utterance as either "Rock Star" or "Dog Star"
- Must compare P(Rock,Star)P(X|Rock Star) with P(Dog,Star)P(X|Dog Star)

Bayesian Classification between word sequences

Decoding word sequences

Decoding word sequences

The best path through Dog Star lies within the dotted portions of the trellis

There are four transition points from Dog to Star in this trellis

There are four different sets paths through the dotted trellis, each with its own best path

Decoding word sequences

SET 1 and its best path

The best path through Dog Star lies within the dotted portions of the trellis

There are four transition points from Dog to Star in this trellis

There are four different sets paths through the dotted trellis, each with its own best path

Decoding word sequences

SET 2 and its best path

The best path through Dog Star lies within the dotted portions of the trellis

There are four transition points from Dog to Star in this trellis

There are four different sets paths through the dotted trellis, each with its own best path

Decoding word sequences

SET 3 and its best path

The best path through Dog Star lies within the dotted portions of the trellis

There are four transition points from Dog to Star in this trellis

There are four different sets paths through the dotted trellis, each with its own best path

Decoding word sequences

SET 4 and its best path

The best path through Dog Star lies within the dotted portions of the trellis

There are four transition points from Dog to Star in this trellis

There are four different sets paths through the dotted trellis, each with its own best path

Decoding word sequences

Decoding word sequences

Similarly, for Rock Star the best path through the trellis is the best of the four transition-specific best paths

$\max ($ rockstar $)=$

 max (rockstar1, rockstar2,```
rockstar3, rockstar4)
```


## Decoding word sequences



Then we'd compare the best paths through Dog Star and Rock Star
$\max ($ dogstar $)=$ max ( dogstar1, dogstar2, dogstar3, dogstar4)
$\max ($ rockstar $)=$ max ( rockstar1, rockstar2, rockstar3, rockstar4)

Viterbi $=$
max(max(dogstar),
max(rockstar))

## Decoding word sequences



## Decoding word sequences



For a given entry point the best path through STAR is the same for both trellises

We can choose between Dog and Rock right here because the futures of these paths are identical

## Decoding word sequences



## Decoding word sequences



## Decoding word sequences

- The two instances of Star can be collapsed into one to form a smaller trellis
o This is possible because we are decoding based on best path score, instead of full forward score


We can only do Viterbi decoding on this collapsed graph.
Full forward decoding is no longer possible

Extending paths through the trellis: Breadth First vs. Depth First Search

## Breadth First Search



## Breadth First Search



## Depth First Search



## Depth First Search



## Depth First Search



- No inconsistencies arise if path scores change monotonically with increasing path length
- This can be guaranteed by normalizing all state output density values for a vector at a time $t$ with respect to the highest valued density at $t$.

Designing optimal graph structures for the language HMM

## Language HMMs for fixed-length word sequences



## Language HMMs for fixed-length word sequences



- The word graph represents all allowed word sequences in our example
- The set of all allowed word sequences represents the allowed "language"
- At a more detailed level, the figure represents an HMM composed of the HMMs for all words in the word graph
- This is the "Language HMM" - the HMM for the entire allowed language
- The language HMM represents the vertical axis of the trellis
- It is the trellis, and NOT the language HMM, that is searched for the best path


## Language HMMs for fixed-length word sequences



Simplification of the language HMM through lower context language models


## Refactored recognition problem for language HMMs which incorporate with lower context language models

- Our new statement of the problem with a smaller language model requirement: word1,word2,... =

$$
\operatorname{argmax}_{w d_{,} w d_{2} \ldots . .}\left\{\operatorname{argmax}_{s_{p}, s_{2}, \ldots, s_{r}} P\left(w d_{1}, w d_{2}, \ldots\right) P\left(X_{1}, X_{2}, . . X_{T} s_{1}, s_{2}, \ldots, s_{T} \mid w d_{1}, w d_{2}, \ldots\right)\right\}
$$

- The probability term can be factored into individual words as

$$
\begin{aligned}
& P\left(w d_{1}\right) P\left(X_{w d l}, S_{w d \mid} \mid w d_{1}\right) \cdot P\left(w d_{2} \mid w d_{1}\right) P\left(X_{w d 2}, S_{w d 2} \mid w d_{2}\right) . \\
& P\left(w d_{3} \mid w d_{1}, w d 2\right) P\left(X_{w d 3}, S_{w d 3} \mid w d_{3}\right) \ldots P\left(w d_{N} \mid w d 1 \ldots w d_{N-1}\right) P\left(X_{w d N}, S_{w d N} \mid w d_{N}\right)
\end{aligned}
$$

- Assume contexts beyond a given length $K$ do not matter

$$
P\left(w d_{N} \mid w d_{N-1}, w d_{N-2}, . ., w d_{N-K}, \ldots, w d_{1}\right)=P\left(w d_{N \mid} \mid w d_{N-1}, w d_{N-2}, ., w d_{N-K}\right)
$$

- Nodes with the same word history $w d_{N-1}, w d_{N-2}, . ., w d_{N-K}$ can be collapsed

Language HMMs for fixed-length word sequences: based on a grammar for Dr. Seuss


## Language HMMs for fixed-length word sequences: command and control grammar



## Language HMMs for arbitrarily long word sequences

- Previous examples chose between a finite set of known word sequences
- Word sequences can be of arbitrary length
- E.g. set of all word sequences that consist of an arbitrary number of repetitions of the word bang
bang
bang bang
bang bang bang
bang bang bang bang
- Forming explicit word-sequence graphs of the type we've seen so far is not possible
- The number of possible sequences (with non-zero a-priori probability) is potentially infinite
- Even if the longest sequence length is restricted, the graph will still be large


## Language HMMs for arbitrarily long word sequences

- Arbitrary word sequences can be modeled with loops under some assumptions. E.g.:
- A "bang" can be followed by another "bang" with probability P("bang").
- P ("bang") $=\mathrm{X} ; \mathrm{P}($ Termination $)=1-\mathrm{X}$;
- Bangs can occur only in pairs with probability X

- A more complex graph allows more complicated patterns
- You can extend this logic to other vocabularies where the speaker says more things than "bang"

- e.g. "bang bang you're dead"


## Language HMMs for arbitrarily long word sequences

- Constrained set of word sequences with constrained vocabulary are realistic
- Typically in command-and-control situations
- Example: operating TV remote
- Simple dialog systems
- When the set of permitted responses to a query is restricted
- Unconstrained length word sequences : NATURAL LANGUAGE
- State-of-art large vocabulary decoders


## Language HMMs for Natural language: with unigram representations

- A bag of words model:
- Any word is possible after any word.
- The probability of a word is independent of the words preceding or succeeding it.
- Also called a UNIGRAM model.
$P($ Star $)=P($ Star $\mid$ Dog $)=P($ Star $\mid$ Rock $)=P($ Star $\mid$ When you wish upon a $)$
$P($ When you wish upon a star $)=$
$P($ When $) P($ you $) P($ wish $) P($ upon $) P(a) P($ star $) P(E N D)$
* "END" is a special symbol that indicates the end of the word sequence
- $\mathrm{P}(\mathrm{END})$ is necessary - without it the word sequence would never terminate
- The total probability of all possible word sequences must sum to 1.0
- Only if $\mathrm{P}(\mathrm{END})$ is explicitly defined will the total probability $=1.0$


## Language HMMs for Natural language: example of a graph which

 uses unigram representations
-The black dots are "non-emitting" states that are not associated with observations

## Language HMMs for Natural language: bigram representations

- A unigram model is only useful when no statistical dependency between adjacent words can be assumed
- Or, alternately, when the data used to learn these dependencies are too small to learn them reliably
- Learning word dependencies: Later in the program
- In natural language, the probability of a word occurring depends on past words.
- Bigram language model: the probability of a word depends on the previous word
- $\mathrm{P}($ Star $\mid$ A Rock $)=\mathrm{P}($ Star $\mid$ The Rock $)=\mathrm{P}($ Star $\mid$ Rock $)$
- $\mathrm{P}($ Star $\mid$ Rock $)$ is not required to be equal to $\mathrm{P}(\mathrm{Star} \mid \operatorname{Dog})$
- In fact the two terms are assumed to be unrelated.


## Language HMMs for Natural language: bigram representations

- Simple bigram example:
- Vocabulary: START, "odd", "even", END
- $\mathrm{P}($ odd $\mid$ START $)=\mathrm{a}, \mathrm{P}($ even $\mid$ START $)=\mathrm{b}, \mathrm{P}($ END $\mid$ START $)=\mathrm{c}$ - $a+b+c=1.0$
- $P($ odd $\mid$ even $)=d, P($ even $\mid$ even $)=e, P(E N D \mid$ even $)=f$ - $\mathrm{d}+\mathrm{e}+\mathrm{f}=1.0$
- $\mathrm{P}($ odd $\mid$ odd $)=\mathrm{g}, \mathrm{P}($ even $\mid$ odd $)=\mathrm{h}, \mathrm{P}(\mathrm{END} \mid$ odd $)=\mathrm{i}$ - $\mathrm{g}+\mathrm{h}+\mathrm{i}=1.0$
- START is a special symbol, indicating the beginning of the utterance
- $\mathrm{P}($ word $\mid$ START $)$ is the probability that the utterance begins with word
- Prob("odd even even odd") = P(odd | START) P(even | odd) P(even | even) P (odd | even) P(END | odd)
- Can be shown that the total probability of all word sequences of all lengths is 1.0
- Again, the definition of START and END symbols, and all bigrams involving the two, is crucial


## Language HMMs for Natural language: building graphs to

 incorporate bigram representations- Edges from "START" contain START dependent word probabilities
- Edges from "Even" contain "Even" dependent word probabilities
* Edges from "Odd" contain "Odd" dependent word probabilities



## Language HMMs for Natural language: building graphs to incorporate bigram representations



## Language HMMs for Natural language: trigram representations

- Assumption: The probability of a word depends on the two preceding words

```
 \(\mathrm{P}(\) waltzing \(\mid\) you'll come a\()=\mathrm{P}(\) waltzing \(\mid\) who'll come a\()=\)
```

    P (waltzing | come a)
    $\mathrm{P}($ you'll come a waltzing matilda with me $)=$
$\mathrm{P}($ you'll | START) * $\mathrm{P}($ come | START you'll) *
$\mathrm{P}(\mathrm{a} \mid$ you'll come $) * \mathrm{P}($ waltzing $\mid$ come a$)$ *
$\mathrm{P}($ matilda | a waltzing $) * \mathrm{P}($ with $\mid$ waltzing matilda $)$ *
$\mathrm{P}($ me | matilda with $)$ * $\mathrm{P}(\mathrm{END} \mid$ with me)

- For any word sequence $\mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{w}_{3}, \mathrm{w}_{4}, \mathrm{w}_{5} \ldots . \mathrm{w}_{\mathrm{N}}$
- $\mathrm{P}\left(\mathrm{w}_{1}, \mathrm{w}_{2} \ldots \mathrm{w}_{\mathrm{N}}\right)=\mathrm{P}\left(\mathrm{w}_{1} \mid\right.$ START $) \mathrm{P}\left(\mathrm{w}_{2} \mid\right.$ START $\left.\mathrm{w}_{1}\right) \mathrm{P}\left(\mathrm{w}_{3} \mid \mathrm{w}_{1} \mathrm{w}_{2}\right) \ldots$ $\mathrm{P}\left(\mathrm{END} \mid \mathrm{w}_{\mathrm{N}-1} \mathrm{w}_{\mathrm{N}}\right)$
- Note that the FIRST term $\mathrm{P}\left(\mathrm{w}_{1} \mid\right.$ START $)$ is a bigram term. All the rest are trigrams.


## Language HMMs for Natural language: building graphs to incorporate trigram representations



## Language HMMs for Natural language: building graphs to

 incorporate trigram representations- Explanation with example: three words vocab "the", "rock", "star"
- The graph initially begins with bigrams of START, since nothing precedes START
- Trigrams for all "START word" sequences
- A new instance of every word is required to ensure that the two preceding symbols are "START word"



## Language HMMs for Natural language: building graphs to

 incorporate trigram representations

## Language HMMs for Natural language: building graphs to

 incorporate trigram representations

## Language HMMs for Natural language: building graphs to

 incorporate trigram representations- Explanation with example: three words vocab "the", "rock", "star"
- The graph initially begins with bigrams of START, since nothing precedes START
- Each word in the second level represents a specific set of two terminal words in a partial word sequence


Edges coming out of this wrongly connected STAR could have word pair contexts that are either "THE STAR" or "ROCK STAR". This is amibiguous. A word cannot have incoming edges from two or more different words

## Language HMMs for Natural language: building graphs to

 incorporate trigram representations

## Language HMMs for Natural language: Generic N-gram representations

- The logic can be extended
- A trigram decoding structure for a vocabulary of D words needs D word instances at the first level and $\mathrm{D}^{2}$ word instances at the second level
- Total of $\mathrm{D}(\mathrm{D}+1)$ word models must be instantiated
- Other, more expensive structures are also possible
- An N-gram decoding structure will need
- $\mathrm{D}+\mathrm{D}^{2}+\mathrm{D}^{3} \ldots \mathrm{D}^{\mathrm{N}-1}$ word instances
- Arcs must be incorporated such that the exit from a word instance in the $(\mathrm{N}-1)^{\text {th }}$ level always represents a word sequence with the same trailing sequence of N -1 words


## Next Class

- How the use of sub-word units complicates the structure of language HMMs in decoders

