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Modelling New Words
• Introduction
• Modelling out-of-vocabulary (OOV) words

– Probabilistic formulation
– Domain-independent methods
– Learning OOV subword units
– Multi-class OOV models
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What is a new word?
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• Almost all speech recognizers search a finite lexicon
– A word not contained in the lexicon is called out-of-vocabulary
– Out-of-vocabulary (OOV) words are inevitable, and problematic!
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New Words are Inevitable!

• Vocabulary growth 
appears unbounded
– New words are 

constantly appearing 
– Growth appears to be 

language independent

• Analysis of multiple 
speech and text corpora
– Vocabulary size vs. 

amount of training data
– Out-of-vocabulary rate 

vs. vocabulary size

• Out-of-vocabulary rate 
a function of data type
– Human-machine speech
– Human-human speech
– Newspaper text
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WER

SER

WER: Word Error Rate      SER: Sentence Error Rate

• Out-of-vocabulary (OOV) words have higher word and 
sentence error rates compared to in-vocabulary (IV) words

New Words Cause Errors!

14%

33%

IV

51%

100%

OOV

• OOV words often cause multiple errors, e.g., “Symphony”
Ref:  “Members of Charleston Symphony Orchestra are being treated…”
Hyp: “Members of Charleston simple   your  stroke are being treated…”
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New Words Stress Recognizers!

• Search computation increases near presence of new words
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New Words are Important!

• New words are often important content words

NAME
NOUN
VERB

ADJECTIVE
ADVERB

Weather Broadcast News

• Content words are more likely to be re-used (i.e., persistent)
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New Word Challenges

• Four challenges with new words:
1) Detecting the presence of the word
2) Determining its location within the utterance
3) Recognizing the underlying phonetic sequence
4) Identifying the spelling of the word

• Applications for new word models:
– Improving recognition, detecting recognition errors 
– Handling partial words
– Enhancing dialog strategies
– Dynamically incorporating new words into vocabulary
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Approaches to OOV Modelling

• Increase vocabulary size!
• Use confidence scoring to detect OOV words
• Use subword units in the first stage of a two-stage system 
• Incorporate an unknown word model into a speech recognizer

– An extension of a filler, or garbage, model for non-words
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Incorporating an OOV Model into ASR
(Bazzi, 2002)

1) Start with standard lexical network
2) Construct separate subword network
3) Add subword network to word 

network as a new word, Woov

• Hybrid search space:  a union of IV and OOV search spaces

Woov

U1

UM

...

WN

...
W1

– Cost, Coov , is added to control OOV 
detection rate

– During language model training, all 
OOV words are mapped to label Woov

• A variety of subword units are possible 
(e.g., phones, syllables, …)

• A variety of topological constraints
– Acoustic-phonetic constraints
– Duration constraints
– …
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The OOV Probability Model

• The standard probability model:
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• Acoustic models: same for IV and OOV words
• Language models: a class n-gram is used for OOV words

Lwthatsuchppp iN ∈∀=∃ ,..21p

)()|()()|()|( ii wPwAPOOVPOOVPAP >pp

Acoustic Model Probability Language Model Probability

An OOV word is hypothesized if:
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Advantages of the Integrated Approach

• Compared to filler models
– Same acoustic models for IV and OOV words

* Probability estimates are comparable
– Subword language model

* Estimated for the purpose of OOV word recognition  
– Word-level language model predicting the OOV word
– Use of large subword units
– All of the above within a single framework

• The best of both worlds: fillers and two-stage
– Early utilization of lexical knowledge (fillers)
– Detailed sublexical modelling (two-stage) 
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A Corpus-Based OOV Model

• The corpus-based OOV model uses a typical phone 
recognition configuration
– Any phone sequence of any length is allowed
– During recognition, phone sequences are constrained by a 

phone n-gram
– The phone n-gram is estimated from the same training corpus

used to train the word recognizer

Coov
P1

PN

...
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Experimental Setup

• Experiments use recognizer from the JUPITER weather 
information system
– SUMMIT segment-based recognizer
– Context-dependent diphone models
– 88,755 utterances of training data
– 2,009 words in recognizer vocabulary
– OOV rate: 2.2% (15.5% utterance-level)
– OOV model uses a phone bigram 

• Experiments use 2,029 test utterances from calls to JUPITER 
– 1,715 utterances with only IV words
– 314 utterances contain OOV words
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Corpus Model OOV Detection Results
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• Half of the OOV words detected with 2% false alarm 
• At 70% detection rate, false alarm is 8.5%

Detection 
rate?

False 
alarm 
rate?

ROC 
curve?
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The Oracle OOV Model

• Goal: quantify the best possible performance with the 
proposed framework

• Approach: build an OOV model that allows for only the 
phone sequences of OOV words in the test set

• Oracle configuration is not equivalent to adding the OOV 
words to the vocabulary

Coov

OOV1

......

OOVn

Better 
Oracles?
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Oracle Model OOV Detection Results
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Significant room for improvement!
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A Domain-Independent OOV Model

• Drawbacks of the corpus model
– Favors more frequent words since it is trained on phonetic 

transcriptions of complete utterances
– Devotes a portion of the n-gram probability mass to cross-

word sequences
– Domain-dependent OOV model might not generalize

• A dictionary OOV model is built from a generic word 
dictionary instead of a corpus of utterances 
– Eliminates domain dependence and bias to frequent words

• Experiments use LDC PRONLEX Dictionary
– 90,694 words with a total of 99,202 pronunciations
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Dictionary Model OOV Detection Results
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At 70% detection rate, false alarm 
rate is reduced from 8.5% to 5.3%
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Impact on Word Error Rate
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• WER on entire test set is reduced from 17.1% to 16.4%
• WER can be reduced from 17.1% to 15.1% with an 

identification mechanism

What 
about IV 

test data?
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Other Performance Measures

• Accuracy in locating OOV words:

• OOV phonetic error rate (PER):
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Learning OOV Sub-Word Units

• Goal: incorporate additional structural constraints to 
reduce false hypothesis of OOV words

• Idea: restrict the OOV network recognition to specific 
multi-phone units

How do we obtain the set of multi-phone units?
• A data-driven approach: measure phone co-occurrence 

statistics (e.g., mutual information) within a large 
dictionary to incrementally propose new multi-phone units
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Learning Multi-Phone Units

• An iterative bottom-up algorithm
– Starts with individual phones 
– Iteratively merges unit pairs to form longer units

• Criterion for merging unit pairs is based on the weighted 
mutual information (MIw) of a pair:

1 2
1 2 1 2

1 2

( , )( , ) ( , )log
( ) ( )w
p u uMI u u p u u

p u p u
=

• At each iteration, the n pairs with highest MIw are merged 
• The number of multi-phone units derived depends on the 

number of iterations
• One byproduct is a complete parse of all words in the 

vocabulary in terms of the learned units



OOV Modelling   236.345 Automatic Speech Recognition

MMI Results

• Initial set of units is the phone set (62 phones)
• Final unit inventory size is 1,977 units (after 200 iterations, 

and 10 merges per iteration)
• OOV model perplexity decreases from 14.0 for the initial 

phone set to 7.1 for the derived multi-phone set
• 67% of derived units are legal English syllables
• Average length of a derived unit is 3.2 phones

• Examples:

Word Pronunciation

whisperers     (w_ih)  (s)  (p_ax_r)  (axr_z)
yugoslavian  (y_uw) (g_ow)  (s_l_aa) (v_iy) (ax_n)
shortage        (sh_ao_r)  (tf_ax)  (jh)  
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MMI Clustering Behavior

Pair Rank

M
I

MI levels off for top ranking pairs; after several iterations 
(can be useful as a stopping criterion)
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MMI Model OOV Detection Results
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• At 70% detection rate, false alarm rate is reduced to 3.2%
• Phonetic error rate is reduced from 37.8% to 31.2%
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OOV Detection Figure of Merit
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• Figure of merit (FOM) measures the area under the first 10% 
and the full 100% of the ROC curve

• The random FOM shows performance for a randomly guessing 
OOV model (ROC is the diagonal y=x)
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A Multi-Class OOV Model

• Approach: extend the OOV framework to model multiple 
categories of unknown words
– A collection of OOV networks in parallel with IV network
– Word-level grammar GN predicts multiple OOV classes

NAME
NOUN
VERB

ADJECTIVE
ADVERB

Weather Broadcast News

• Motivation: finer modelling of unknown word classes
– At the phonetic level: similar phonotactic structure
– At the language model level: similar linguistic usage patterns
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Multi-Class Experiments

• Class assignments in terms of part-of-speech tags
– Derived from a tagged dictionary of words (LDC COMLEX)
– Word-level language model trained on eight POS classes
– Multiple sub-word LMs used for the different POS classes

• Class assignments based on perplexity clustering
– Create a phone bigram language model from initial clusters
– Use K-means clustering to shift words from one cluster to another
– On every iteration, each word is moved to the cluster with the 

lowest perplexity (highest likelihood)
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Multi-Class Model OOV Detection Results

• Multi-class method improves upon dictionary OOV model
• POS model achieves 81% class identification accuracy
• Perplexity clustering performs better than POS classes
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Multi-OOV Language Model Contribution

• Most of the gain is from the multiple OOV networks
– Phonotactics more important than language model constraints

• Behavior may be different for other domains

Condition/FOM G1 n-gram G8 n-gram
1 OOV network 0.64 0.65
8 OOV networks 0.68 0.68
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Deriving Multi-Classes by Clustering
• Clustering can be used to suggest initial multi-classes

– Bottom-up clustering to initialize word class assignment
– Distance metric based on the phone bigram similarity 
– An average similarity measure is used to merge clusters:

• An arbitrary number of classes can be clustered
• Classes can be smoothed with perplexity clustering
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Other Related Research Areas

• Measuring impact on OOV recognition to understanding 
• Improving OOV phonetic accuracy 
• Extending the approach to model out-of-domain utterances
• Developing OOV-specific confidence scores

– To improve detection quality
• Modelling other kinds of out-of-domain sounds (e.g., noise)
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