Lecture # 19 Session 2003 Modelling New Words

- Introduction
- Modelling out-of-vocabulary (OOV) words
 - Probabilistic formulation
 - Domain-independent methods
 - Learning OOV subword units
 - Multi-class OOV models

What is a new word?

- Almost all speech recognizers search a finite lexicon
 - A word not contained in the lexicon is called out-of-vocabulary
 - Out-of-vocabulary (OOV) words are inevitable, and problematic!

New Words are Inevitable!

- Analysis of multiple speech and text corpora
 - Vocabulary size vs. amount of training data
 - Out-of-vocabulary rate vs. vocabulary size
- Vocabulary growth appears unbounded
 - New words are constantly appearing
 - Growth appears to be language independent
- Out-of-vocabulary rate a function of data type
 - Human-machine speech
 - Human-human speech
 - Newspaper text

New Words Cause Errors!

 Out-of-vocabulary (OOV) words have higher word and sentence error rates compared to in-vocabulary (IV) words

 OOV words often cause multiple errors, e.g., "Symphony" Ref: "Members of Charleston <u>Symphony</u> Orchestra are being treated..." Hyp: "Members of Charleston <u>simple your stroke</u> are being treated..."

New Words Stress Recognizers!

• Search computation increases near presence of new words

New Words are Important!

• New words are often important content words

• Content words are more likely to be re-used (i.e., persistent)

- Four challenges with new words:
 - 1) **Detecting** the presence of the word
 - 2) Determining its location within the utterance
 - 3) Recognizing the underlying phonetic sequence
 - 4) Identifying the spelling of the word
- Applications for new word models:
 - Improving recognition, detecting recognition errors
 - Handling partial words
 - Enhancing dialog strategies
 - Dynamically incorporating new words into vocabulary

Approaches to OOV Modelling

- Increase vocabulary size!
- Use confidence scoring to detect OOV words
- Use subword units in the first stage of a two-stage system
- Incorporate an unknown word model into a speech recognizer
 - An extension of a filler, or garbage, model for non-words

Incorporating an OOV Model into ASR (Bazzi, 2002)

- Hybrid search space: a union of IV and OOV search spaces
 - 1) Start with standard lexical network
 - 2) Construct separate subword network
 - 3) Add subword network to word network as a new word, W_{oov}
 - Cost, C_{oov}, is added to control OOV detection rate
 - During language model training, all OOV words are mapped to label W_{oov}
- A variety of subword units are possible (e.g., phones, syllables, ...)
- A variety of topological constraints
 - Acoustic-phonetic constraints
 - Duration constraints

W $\mathbf{W}_{\mathbf{oov}}$

The OOV Probability Model

• The standard probability model:

 $W^* = \arg \max_{W} P(A | W) P(W)$

- Acoustic models: same for IV and OOV words
- Language models: a class *n*-gram is used for OOV words

Advantages of the Integrated Approach

- Compared to filler models
 - Same acoustic models for IV and OOV words
 - * Probability estimates are comparable
 - Subword language model
 - * Estimated for the purpose of OOV word recognition
 - Word-level language model predicting the OOV word
 - Use of large subword units
 - All of the above within a single framework
- The best of both worlds: fillers and two-stage
 - Early utilization of lexical knowledge (fillers)
 - Detailed sublexical modelling (two-stage)

A Corpus-Based OOV Model

- The corpus-based OOV model uses a typical phone recognition configuration
 - Any phone sequence of any length is allowed
 - During recognition, phone sequences are constrained by a phone *n*-gram
 - The phone *n*-gram is estimated from the same training corpus used to train the word recognizer

Experimental Setup

- Experiments use recognizer from the JUPITER weather information system
 - SUMMIT segment-based recognizer
 - Context-dependent diphone models
 - 88,755 utterances of training data
 - 2,009 words in recognizer vocabulary
 - OOV rate: 2.2% (15.5% utterance-level)
 - OOV model uses a phone bigram
- Experiments use 2,029 test utterances from calls to JUPITER
 - 1,715 utterances with only IV words
 - 314 utterances contain OOV words

Corpus Model OOV Detection Results

- Half of the OOV words detected with 2% false alarm
- At 70% detection rate, false alarm is 8.5%

The Oracle OOV Model

- Goal: quantify the best possible performance with the proposed framework
- Approach: build an OOV model that allows for only the phone sequences of OOV words in the test set
- Oracle configuration is <u>not</u> equivalent to adding the OOV words to the vocabulary

Oracle Model OOV Detection Results

Significant room for improvement!

A Domain-Independent OOV Model

- Drawbacks of the corpus model
 - Favors more frequent words since it is trained on phonetic transcriptions of complete utterances
 - Devotes a portion of the *n*-gram probability mass to crossword sequences
 - Domain-dependent OOV model might not generalize
- A dictionary OOV model is built from a generic word dictionary instead of a corpus of utterances
 - Eliminates domain dependence and bias to frequent words
- Experiments use LDC PRONLEX Dictionary
 - 90,694 words with a total of 99,202 pronunciations

Dictionary Model OOV Detection Results

At 70% detection rate, false alarm rate is reduced from 8.5% to 5.3%

Impact on Word Error Rate

- WER on entire test set is reduced from 17.1% to 16.4%
- WER can be reduced from 17.1% to 15.1% with an identification mechanism

Other Performance Measures

Learning OOV Sub-Word Units

- Goal: incorporate additional structural constraints to reduce false hypothesis of OOV words
- Idea: restrict the OOV network recognition to specific multi-phone units

How do we obtain the set of multi-phone units?

• A data-driven approach: measure phone co-occurrence statistics (e.g., mutual information) within a large dictionary to incrementally propose new multi-phone units

Learning Multi-Phone Units

- An iterative bottom-up algorithm
 - Starts with individual phones
 - Iteratively merges unit pairs to form longer units
- Criterion for merging unit pairs is based on the weighted mutual information (MI_w) of a pair:

$$MI_{w}(u_{1}, u_{2}) = p(u_{1}, u_{2}) \log \frac{p(u_{1}, u_{2})}{p(u_{1})p(u_{2})}$$

- At each iteration, the n pairs with highest MI_w are merged
- The number of multi-phone units derived depends on the number of iterations
- One byproduct is a complete parse of all words in the vocabulary in terms of the learned units

MIT

MMI Results

- Initial set of units is the phone set (62 phones)
- Final unit inventory size is 1,977 units (after 200 iterations, and 10 merges per iteration)
- OOV model perplexity decreases from 14.0 for the initial phone set to 7.1 for the derived multi-phone set
- 67% of derived units are legal English syllables
- Average length of a derived unit is 3.2 phones
- Examples:

Word	Pronunciation	
whisperers	(w_ih) (s) (p_ax_r) (axr_z)	
yugoslavian	(y_uw) (g_ow) (s_I_aa) (v_iy) (ax_n)	
shortage	(sh_ao_r) (tf_ax) (jh)	

MMI Clustering Behavior

MI levels off for top ranking pairs; after several iterations (can be useful as a stopping criterion)

MMI Model OOV Detection Results

- At 70% detection rate, false alarm rate is reduced to 3.2%
- Phonetic error rate is reduced from 37.8% to 31.2%

OOV Detection Figure of Merit

- Figure of merit (FOM) measures the area under the first 10% and the full 100% of the ROC curve
- The random FOM shows performance for a randomly guessing OOV model (ROC is the diagonal y=x)

OOV Model	100% FOM	10% FOM
Corpus	0.89	0.54
Dictionary	0.93	0.64
ММІ	0.95	0.70
Oracle	0.97	0.80
Random	0.50	0.10

A Multi-Class OOV Model

- Motivation: finer modelling of unknown word classes
 - At the phonetic level: similar phonotactic structure
 - At the language model level: similar linguistic usage patterns

- Approach: extend the OOV framework to model multiple categories of unknown words
 - A collection of OOV networks in parallel with IV network
 - Word-level grammar G_N predicts multiple OOV classes

Multi-Class Experiments

- Class assignments in terms of part-of-speech tags
 - Derived from a tagged dictionary of words (LDC COMLEX)
 - Word-level language model trained on eight POS classes
 - Multiple sub-word LMs used for the different POS classes
- Class assignments based on perplexity clustering
 - Create a phone bigram language model from initial clusters
 - Use K-means clustering to shift words from one cluster to another
 - On every iteration, each word is moved to the cluster with the lowest perplexity (highest likelihood)

Multi-Class Model OOV Detection Results

- Multi-class method improves upon dictionary OOV model
- POS model achieves 81% class identification accuracy
- Perplexity clustering performs better than POS classes

Condition/FOM	G ₁ <i>n</i> -gram	G ₈ <i>n-</i> gram
1 OOV network	0.64	0.65
8 OOV networks	0.68	0.68

- Most of the gain is from the multiple OOV networks
 - Phonotactics more important than language model constraints
- Behavior may be different for other domains

Deriving Multi-Classes by Clustering

- Clustering can be used to suggest initial multi-classes
 - Bottom-up clustering to initialize word class assignment
 - Distance metric based on the phone bigram similarity
 - An average similarity measure is used to merge clusters:
 - $d_{avg}(X_m, X_n) = \frac{1}{C_m C_n} \sum_{w_i \in X_m} \frac{\sum d(w_i, w_j)}{\sum d(w_i, w_j)}$ An arbitrary number of classes can be clustered
- Classes can be smoothed with perplexity clustering

Model	Classes	10% FOM
Dictionary	1	0.64
POS Classes	8	0.68
PPCIUS (AggClus Init)	8	0.71
PPCIUS (POS Init)	8	0.72

MIT

Other Related Research Areas

- Measuring impact on OOV recognition to understanding
- Improving OOV phonetic accuracy
- Extending the approach to model out-of-domain utterances
- Developing OOV-specific confidence scores
 - To improve detection quality
- Modelling other kinds of out-of-domain sounds (e.g., noise)

References

A. Asadi, "Automatic detection and modeling of new words in a large vocabulary continuous speech recognition system," Ph.D. thesis, Northeastern University, 1991.

I. Bazzi, "Modelling out-of-vocabulary words for robust speech recognition," Ph.D. thesis, MIT, 2002.

G. Chung, "Towards multi-domain speech understanding with flexible and dynamic vocabulary," Ph.D. thesis, MIT, 2001.

L. Hetherington, "The problem of new, out-of-vocabulary words in spoken language systems," Ph.D. thesis, MIT, 1994.