
Acoustic Theory of Speech Production 

• Overview 

• Sound sources 

• Vocal tract transfer function 

– Wave equations 

– Sound propagation in a uniform acoustic tube 

• Representing the vocal tract with simple acoustic tubes 

• Estimating natural frequencies from area functions 

• Representing the vocal tract with multiple uniform tubes 
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Phonemes in American English 

PHONEME EXAMPLE PHONEME EXAMPLE PHONEME EXAMPLE


/i¤/ beat 
/I/ bit 
/e¤/ bait 
/E/ bet 
/@/ bat 
/a/ Bob 
/O/ bought 
/^/ but 
/o⁄/ boat 
/U/ book 
/u⁄/ boot 
/5/ Burt 
/a¤/ bite 
/O¤/ Boyd 
/a⁄/ bout 
/{/ about 

/s/ see /w/ wet 
/S/ she /r/ red 
/f/ fee /l/ let 
/T/ thief /y/ yet 
/z/ z /m/ meet 
/Z/ Gigi /n/ neat 
/v/ v /4/ sing 
/D/ thee /C/ church 
/p/ pea /J/ judge 
/t/ tea /h/ heat 
/k/ key 
/b/ bee 
/d/ Dee 
/g/ geese 
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Places of Articulation for Speech Sounds


Palato-Alveolar Velar 

Alveolar 

Labial Uvular 
Dental 

Palatal 
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Speech Waveform: An Example 

Two plus seven is less than ten 
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A Wideband Spectrogram 

Two plus seven is less than ten 
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Acoustic Theory of Speech Production 

•	 The acoustic characteristics of speech are usually modelled as a 
sequence of source, vocal tract filter, and radiation characteristics 

UG 

UL


Pr 
r


Pr (jΩ) = S(jΩ) T (jΩ) R(jΩ)


• For vowel production: 

S(jΩ) = UG(jΩ) 
T (jΩ) = UL(jΩ) / UG(jΩ) 
R(jΩ) = Pr (jΩ) / UL(jΩ) 
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Sound Source: Vocal Fold Vibration 

Modelled as a volume velocity source at glottis, UG(jΩ) 

Pr ( t ) 

U
G

( t ) 

T  1/Fo o =

t 

t 

UG ( f ) 

1 / f 2 

f


F0 ave (Hz) F0 min (Hz) F0 max (Hz) 
Men 125 80 200 

Women 225 150 350 
Children 300 200 500 

6.345 Automatic Speech Recognition Acoustic Theory of Speech Production 8 



� 

Sound Source: Turbulence Noise 

• Turbulence noise is produced at a constriction in the vocal tract 

– Aspiration noise is produced at glottis 

– Frication noise is produced above the glottis 

• Modelled as series pressure source at constriction, PS (jΩ) 

P ( f )s 

f 

0.2 V 
D 

4A √ 
V : Velocity at constriction D: Critical dimension = ≈ A 

π 
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Vocal Tract Wave Equations 

Define: u(x, t) =⇒ 
U (x, t) =⇒ 
p(x, t) =⇒ 

ρ =⇒

c =⇒


particle velocity

volume velocity (U = uA)

sound pressure variation (P = PO + p)

density of air

velocity of sound


• Assuming plane wave propagation (for a cross dimension � λ), 
and a one-dimensional wave motion, it can be shown that 

− 
∂p 

= ρ
∂u − 

∂u 
=

1 ∂p ∂2u 1 ∂2u 
= 

∂x ∂t ∂x ρc2 ∂t ∂x2 c2 ∂t2 

• Time and frequency domain solutions are of the form 

u(x, t) = u+(t − 
x 

) − u−(t + 
x 

) u(x, s) = 
1 

P+e−sx/c − P−esx/c 

c c ρc 
x x 

p(x, t) = ρc u+(t − ) +  u−(t + ) p(x, s) = P+e−sx/c + P−esx/c 

c c 
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Propagation of Sound in a Uniform Tube 

A 

x = - l x = 0 

• The vocal tract transfer function of volume velocities is 

UL(jΩ) U (−�, jΩ)
T (jΩ) = 

UG(jΩ) 
= 

U (0, jΩ) 

• Using the boundary conditions U (0, s) =  UG(s) and P(−�, s) = 0  

2 1 
T (s) =  

es�/c + e−s�/c 
T (jΩ) = 

cos(Ω�/c) 

• The poles of the transfer function T (jΩ) are where cos(Ω�/c) = 0 

4�(2πfn)� 
= 

(2n 
2 
− 1) 

π fn = 4 
c

� 
(2n−1) λn = 

(2n − 1) 
n = 1, 2, . . .  

c 
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Propagation of Sound in a Uniform Tube (con’t)


•	 For c = 34, 000 cm/sec, � = 17 cm, the natural frequencies (also 
called the formants) are at 500 Hz, 1500 Hz, 2500 Hz, . . .  

Ωj 

x 

x 

x 

x 

x 

x 

∞ ∞∞∞ ∞
40)


Ω
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 (

 j 

2010
 

20
 lo

g 

0 
σ


0 1 2 3 4 5 

Frequency ( kHz ) 

•	 The transfer function of a tube with no side branches, excited at 
one end and response measured at another, only has poles 

•	 The formant frequencies will have finite bandwidth when vocal 
tract losses are considered (e.g., radiation, walls, viscosity, heat) 

4 λ1, 4 λ2, 4 λ3, ...,•	 The length of the vocal tract, �, corresponds to 1 3 5 

where λi is the wavelength of the ith natural frequency 
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Standing Wave Patterns in a Uniform Tube


A uniform tube closed at one end and open at the other is often 
referred to as a quarter wavelength resonator 

x
glottis lips 

SWP for 
F1 

|U(x)| 

SWP for 
F2 

2 
3 

SWP for 
F3 

2 4 
5 5 
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Natural Frequencies of Simple Acoustic Tubes


z
-l 

A z
-l 

A 

x = - l x = 0 x = - l x = 0 

Quarter wavelength resonator Half-wavelength resonator 

P(x, jΩ) = 2P+ cos
Ωx 

P(x, jΩ) = −j2P+ sin 
Ωx 

c c 

U(x, jΩ) = −j
A A 
ρc

2P+ sin
Ωx 

U(x, jΩ) = 
ρc

2P+ cos
Ωx 

c c 

ρc 
tan 

ρc 
cotY−� = j

A Ω� 
Y−� = −j

A Ω� 
c c 

≈ jΩ
A� A 1 

ρc2 
= jΩCA Ω�/c � 1 ≈ −j 

Ωρ� 
= −j 

ΩMA 
Ω�/c � 1 

CA = A�/ρc2 = acoustic compliance MA = ρ�/A = acoustic mass 

c c
fn = 

4�
(2n − 1) n = 1, 2, . . .  fn = 

2�
n n  = 0, 1, 2, . . .  
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Approximating Vocal Tract Shapes 

[� i� ]  [ a� ]  [� u� ] 


A1 A2 

1 l 2 l 
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2 

1 2

l

Estimating Natural Resonance Frequencies 

•	 Resonance frequencies occur where impedance (or admittance) 
function equals natural (e.g., open circuit) boundary conditions 

UG A1 A2 UL 

1
l 

Y  +  Y  =  0 

• For a two tube approximation it is easiest to solve for Y1 + Y2 = 0  

j
A1 tan 

Ω�1 −�j A2 cot 
Ω�2 = 0  

ρc c ρc c 

sin 
Ω�1 sin 

Ω�2 −�A2 cos 
Ω�1 cos 

Ω�2 = 0  
c c A1 c c 
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Decoupling Simple Tube Approximations 

• If A1 ��A2, or A1 ��A2, the tubes can be decoupled and natural 
frequencies of each tube can be computed independently 

• For the vowel /i¤/, the formant frequencies are obtained from: 

A1 A2 

1l 2l 

c c 
fn = 2�1 

n plus fn = 2�2 
n 

• At low frequencies: ��
A2 

�1/2 1 
��

1 
�1/2 c 

f = = 
2π A1�1�2 2π CA1 MA2 

• This low resonance frequency is called the Helmholtz resonance 
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Vowel Production Example 

7 cm
2 

1 cm
2 

8 cm
2 

1 cm
2 

9 cm 8 cm 9 cm 6 cm 

+ + + 

1093 268 1944 2917
972 
2917 . . . 

. . . . 

. . . . 

. . . . 

Formant Actual Estimated Formant Actual 
F1 789 972 F1 256 
F2 1276 1093 F2 1905 
F3 2808 2917 F3 2917 
. . . . . 
. . . . . 

Estimated 
268 

1944 
2917 

.


.
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Example of Vowel Spectrograms
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Estimating Anti-Resonance Frequencies (Zeros)

Zeros occur at frequencies where there is no measurable output 

UN 

UG Ap Ao 

An 

Yp Yo 

Yn 

n l

Ab Ac Af P s 
UL 

lp lo l b l c l f 

• For nasal consonants, zeros in UN occur where YO = ∞ 

•	 For fricatives or stop consonants, zeros in UL occur where the 
impedance behind source is infinite (i.e., a hard wall at source) 

Y   =  0 Y  +  Y  =  0
1 3 4

• Zeros occur when measurements are made in vocal tract interior 
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Consonant Production 

Ab Ac AfPs 

l b l c l f 

POLES ZEROS 

+ + + + 

Ab Ac Af �b �c �f 

[g] 5 0.2 4 9 3 5 
[s] 5 0.5 4 11 3 2.5 

[g] [s] 
poles zeros poles zeros 
215 0 306 0 

1750 1944 1590 1590 
1944 2916 3180 2916 
3888 3888 3500 3180 

. . . .


. . . .
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Example of Consonant Spectrograms
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Wide Band Spectrogram
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A 
Ωρ� 

A Y� � −j
Yl 

Perturbation Theory 
for small �


l


• Consider a uniform tube, closed at one end and open at the other 

l


Δ x


•	 Reducing the area of a small piece of the tube near the opening 
(where U is max) has the same effect as keeping the area fixed 
and lengthening the tube 

•	 Since lengthening the tube lowers the resonant frequencies, 
narrowing the tube near points where U (x) is maximum in the 
standing wave pattern for a given formant decreases the value of 
that formant 
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A� 
Perturbation Theory (cont’d) 

A Y� � jΩ 
ρc2 

for small � 
Yl 

l


l


Δ x


•	 Reducing the area of a small piece of the tube near the closure 
(where p is max) has the same effect as keeping the area fixed and 
shortening the tube 

•	 Since shortening the tube will increase the values of the formants, 
narrowing the tube near points where p(x) is maximum in the 
standing wave pattern for a given formant will increase the value 
of that formant 
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Summary of Perturbation Theory Results 

x
glottis lips 

SWP for 
F1 

|U(x)| 

SWP for 
F2 

2 
3 

SWP for 
F3 

2 4 
5 5 

x
glottis lips 

Δ F1 1 
2 

+ 

− 

(as a consequence of decreasing A)


Δ F2 1 
2 

+ + 

− − 

Δ F3 1 
2 

− 

++ 

− 

+ 

− 
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Illustration of Perturbation Theory 
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Illustration of Perturbation Theory 

The ship was torn apart on the sharp (reef) 
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Illustration of Perturbation Theory 

(The ship was torn apart on the sh)arp reef 
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Multi-Tube Approximation of the Vocal Tract


•	 We can represent the vocal tract as a concatenation of N lossless 
tubes with constant area {Ak}�and equal length Δx = �/N 

• The wave propagation time through each tube is τ = Δx = Ncc 

A A7 

Δx 

ΔxΔx 
Δx 

Δx 
Δx

Δx 
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Wave Equations for Individual Tube 

The wave equations for the kth tube have the form 
ρc x 
Ak 

k (t −�x 
) +  U −�

c 
pk(x, t) =  [U + 

k (t + )] 
c 

Uk(x, t) =  U + 
c ) −�U −�

c )k (t −�x k (t + x 

where x is measured from the left-hand side (0 ≤�x ≤�Δx) 

+ + + +Uk ( t ) Uk( t - τ ) U 
k+1

( t ) U 
k+1

( t - τ ) 

- - - -Uk ( t ) U 
k
( t + τ ) U k+1( t ) U 

k+1
( t + τ ) 

Ak 

Δx 

Δx 

A k+1 
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Update Expression at Tube Boundaries 

We can solve update expressions using continuity constraints at 
tube boundaries e.g., pk(Δx, t) =  pk+1(0, t), and Uk(Δx, t) =  Uk+1(0, t) 

+ k + 1 U
+ 

k + 1 U
-

k
U τ ) -

k 
U τ ) 

+ 

1 - r 

1 + rk 

k 

r
k k - r 

τ 
DELAY 

τ 
DELAY 

τ 
DELAY 

τ 
DELAY 

k th ( k + 1 ) st 

k (t −�τ) +  rkU −�

( t ) 

( t ) ( t +

( t -

tube tube 

+Uk ( t ) U k + 1 ( t - τ ) 

- -Uk ( t ) U 
k + 1

( t + τ ) 

Uk 
+
+1(t) = (1 + rk)U + 

k+1(t) 

Uk 
−(t + τ) = −rkUk 

+(t −�τ) + (1 −�rk)U −�
k+1(t) 

rk = 
Ak+1 −�Ak note |�rk |≤�1 
Ak+1 + Ak 
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Digital Model of Multi-Tube Vocal Tract 

• Updates at tube boundaries occur synchronously every 2τ 

• If excitation is band-limited, inputs can be sampled every T = 2τ 

•	 Each tube section has a delay of z−1/2 
1 

+ z 2 1 + rk +Uk ( z ) 

k
r 

1 

k 
-r 

Uk + 1 ( z ) 

- -
Uk ( z ) Uk + 1 ( z ) 

z 2 1 - r
k 

• The choice of N depends on the sampling rate T 

T = 2τ = 2  
� 

=⇒� N =
2� 

Nc  cT 

• Series and shunt losses can also be introduced at tube junctions 

– Bandwidths are proportional to energy loss to storage ratio 

– Stored energy is proportional to tube length 
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Assignment 1 
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