Lecture # 20 Session 2003 Noise Robustness and Confidence Scoring

Lecturer: T. J. Hazen

- Handling variability in acoustic conditions
 - Channel compensation
 - Background noise compensation
 - Foreground noises and non-speech artifacts
- Computing and applying confidence scores
 - Recognition confidence scoring
 - Language understanding issues
 - Dialogue modeling issues

Typical Digital Speech Recording

- Recognizers make errors
- Some reasons for errors:
 - Presence of previously unseen words or events
 - Difficult acoustic conditions or background noises
 - Presence of highly confusable words
 - Insufficient amount of training data
 - Mismatch between training and testing data
 - Models too rigid to handle variability
- Methods to handling error-full data
 - Adjust or adapt to current conditions
 - Identify when errors occur and perform action to recover

Noises and Non-Speech Artifacts

- Non-speech artifacts can be extremely varied
 - Background noises (music, dog bark, door slam, etc.)
 - Microphone and channel noises (clicks, beeps, static, etc.)
 - Non-lexical speaker noises (cough, laugh, lip smack, etc.)
- Noises can be simultaneous with speech

Recognition Experiments

- Experiments w/ baseline JUPITER recognizer
 - Clean ① No OOV words and no non-speech artifacts
 - With Noise ^① Contains at least one non-speech artifact
 - With OOV ^① Contains at least one OOV word

Difficult Channel and Noise Conditions

- Variable system functions
 - From different channels (e.g., land line, cellular, etc.)
 - Different microphones
- Constant background noise
 - Channel static
 - Car engine noise
 - Air conditioning hiss
- Intermittent foreground or background noises
 - Cough
 - Laugh
 - Door slam
 - Handset taps or clicks
 - Phone ringing
 - Dog barking

• The channel of a speech recording can be modeled as a lineartime invariant filter:

• In the frequency domain this becomes:

 $\mathbf{Y}(\boldsymbol{\omega}) = \mathbf{S}(\boldsymbol{\omega})\mathbf{F}(\boldsymbol{\omega})$

• In the log-frequency domain this becomes:

 $\log Y(\omega) = \log S(\omega) + \log F(\omega)$

• In the cepstral domain this becomes:

$$\mathbf{c}[\mathbf{n}] = \hat{\mathbf{s}}[\mathbf{n}] + \hat{\mathbf{f}}[\mathbf{n}]$$

Cepstral Mean Normalization (cont)

- During recognition, speech is processed in frames
- Let c[n,m] be the nth cepstral coefficient of the mth frame: $c[n,m] = \widehat{s}[n,m] + \widehat{f}[n,m]$
- Because the channel filter is linear time invariant:

 $\hat{f}[n,m] = \hat{f}[n] \implies c[n,m] = \hat{s}[n,m] + \hat{f}[n]$

- Goal: Remove the effect of the filter!
- Start by averaging cepstrum over all frames:

$$\overline{c}[n] = \frac{1}{M} \sum_{m=1}^{M} c[n,m] = \widehat{f}[n] + \frac{1}{M} \sum_{m=1}^{M} \widehat{s}[n,m]$$

Cepstral Mean Normalization (cont)

Useful when filter variation is larger than speaker variation

- Reference: Furui, 1981

Handling Background Noise

- Multi-style training
 - Train with data from a variety of noisy environments
 - Problem: Poor estimates for new or unexpected environments
 - Reference: Lippmann, et al, 1987
- Spectral-subtraction
 - Estimate static spectral components during silence
 - Subtract static spectral components from dynamic spectra
 - Problem: Poor estimates of speech in regions with low signal-tonoise ratio
 - Reference: Boll, 1979
- Sub-band recognition
 - Run parallel "sub-band" recognizers
 - Sub-band recognizers operate on different spectral bands
 - Weight sub-bands based on their signal-to-noise ratio
 - Problem: Using multiple recognizers is computationally expensive
 - Reference: Bourlard and Dupont, 1996

Parallel Model Combination

- Parallel Model Combination (PMC) for background noise compensation
 - Train speech acoustic models on clean speech
 - Estimate noise model for current conditions
 - Combine clean speech models with estimated noise model
- Method assumes mean spectrum of signal can be reverse estimated from mean vector of model

- Clean speech model for phonetic unit u:

$$\mathbf{P}(\vec{\mathbf{s}} | \mathbf{u}) \equiv \mathbf{N}(\vec{\mu}_{u}, \Sigma_{u}) \implies \mathbf{S}(\omega) = \mathbf{F}^{-1}(\vec{\mu}_{u})$$

– Noise model estimated from non-speech region of current conditions:

$$P(\vec{n}) \equiv N(\vec{\mu}_n, \Sigma_n) \quad \square > N(\omega) = F^{-1}(\vec{\mu}_n)$$

• Given estimates of the mean spectral values of clean speech and noise, do combination:

$$\vec{\mu}'_{u} = F(S(\omega) + N(\omega)) = F(F^{-1}(\vec{\mu}_{u}) + F^{-1}(\vec{\mu}_{n}))$$
$$P_{PMC}(\vec{a} | u) \equiv N(\vec{\mu}'_{u}, \Sigma_{u})$$

- Issues:
 - Must be able to reverse estimate spectrum from model mean
 - Must have a reliable estimate of current noise conditions
- Reference: Gales, 1996

Handling Foreground Noises

- Build explicit models for different noises and non-speech artifacts
 - Reference: Ward, 1989
- One possible approach:
 - Build acoustic model network for each noise model
 - Noise network contains multiple states to model dynamic noises
 - Add noise networks to word network as new words
 - Control noise detection rate with cost, C_{NOISE}

Non-Speech Modeling Experiment

- Added 5 non-speech models to JUPITER
 - <cough>, <laugh>, <noise>, <background>, <hangup>
 - Reference: Hazen, Hetherington and Park, 2001
- Word error rate results:

Test Set Data	Baseline	+ Noise Models	
All Data	18.9%	17.1%	
Data w/ Noise	64.0%	45.1%	
IV Data w/ Noise	46.4%	28.2%	
IV Data w/ No Noise	9.4%	9.6%	

IV = In-vocabulary data only

Confidence Scoring Overview

- Question: How do we assess if a recognizer's hypothesis is correct or not?
- Goal: Generate confidence scores which estimate the likelihood that a hypothesis is correct
- Scores can be computed at multiple levels:
 - Phonetic scores
 - Word scores
 - Utterance scores
- One approach:
 - Find features correlated with correctness
 - Construct feature vector from good features
 - Build correct/incorrect classifier for feature vector

Acoustic Likelihood Scores

• An acoustic likelihood score is computed as:

 $p(\vec{x} \mid u)$

- Acoustic likelihood scores are good for comparing different hypotheses
 - Score are relative density likelihoods, not probabilities
- Likelihood scores do not provide good estimate of correctness or reliability

Normalized Acoustic Scores

• The *a posteriori* probability expression is:

$$p(u \mid \vec{x}) = \frac{p(\vec{x} \mid u)}{p(\vec{x})} p(u)$$

normalized acoustic likelihood score

- In probabilistic framework $p(\vec{x})$ is usually ignored
- Recognition is unaffected by normalization
 - normalization model is independent of phone identity
 - normalized scores can be viewed as confidence scores

• Theoretically normalization model is:

$$p(\vec{x}) = \sum_{\forall u} p(\vec{x} \mid u) p(u)$$

- In practice normalization is performed with an approximate model of $p(\vec{x})$
- Approximation of $p(\vec{x})$ using bottom-up clustering:
 - Similar Gaussian components merged
 - Merged model is ML approximation of mixture components to be merged
 - Merging continues until desired size is reached
 - Normalization model typically has between 50 and 100 mixture components in SLS recognizers

Word Confidence Features

- Want to extract information from recognition computation which is correlated with correctness
- Possible word level confidence features extracted from acoustic scores:
 - Mean normalized acoustic score over word
 - Minimum normalized acoustic score over word
 - Mean normalization model score
- Other sources of information:
 - N-best purity scores
 - Language model scores
 - Number of competing hypotheses
 - Relative score differences between hypotheses
- Reference: Chase, 1997

The N-best Purity Measure

• *N*-best purity is the fraction of *N*-best hypotheses in which a word hypothesis appears

Confidence Classification

- Given a confidence feature vector we want to classify the vector as correct or incorrect
- This is a standard two class classification problem
- Possible approaches:
 - Linear discriminant projection (Pao, et al, 1998)
 - Neural network classifier (Wendemuth, et al, 1999)
 - Mixture Gaussian classifier (Kamppari & Hazen, 2000)
 - Support vector machines (Ma, et al, 2001)

Linear Discriminant Classifier

• Discriminative linear projection applied to confidence feature vector:

- Projection vector:
 - Trained on independent development set
 - Minimum Classification Error (MCE) training
 - MCE performs gradient descent training on error rate

Probabilistic Confidence Classifier

• MAP-based classifier trained for raw score:

$$c = log\left(\frac{p(r \mid correct)P(correct)}{p(r \mid incorrect)P(incorrect)}\right) - t$$

- Probabilistic model:
 - Trained on independent set of development data
 - Gaussian models can be used for likelihood densities
 - Priors based on recognizer hypothesis error rate
- Threshold can be varied to adjust balance of *false acceptances* vs. *false rejections*

Word Confidence Experiment

- Want to reject hypothesized words for which recognizer has low confidence
- Train confidence model on independent development data
- Test on independent test set of JUPITER data
- Evaluate using ROC curve
 - Examines correct acceptances vs. false acceptances
 - Want to reject incorrectly hypothesized words and accept correctly hypothesized words
 - Results shown for two individual feature and for full feature vector with 10 features
- Reference: Hazen, et al, 2002

Word Confidence Results

Using Confidence Scores

- To be useful, confidence scores must be integrated with language understanding and dialogue modeling
- Confidence scores are often quantized into two or three decision regions:
 - Accept or reject (two regions)
 - Accept, reject, or uncertain (three regions)
- Language understanding component can be adapted to handle rejected words
- Dialogue management component can perform different actions based on confidence score
 - Perform normal action when everything is accepted
 - Ask for confirmation when uncertain
 - Ask user to repeat or rephrase when rejected
- Reference: Hazen, et al, 2002

N-best List Modifications

What is the forecast for Paramus Park, New Jersey?

Standard *N*-best list with confidence scores:

what_is 6.13 the 5.48 forecast 6.88 for 5.43 paris -0.03 park 4.41 new_jersey 4.35 what_is 6.13 the 5.48 forecast 6.88 for 4.47 hyannis -0.61 park 4.41 new_jersey 4.35 what_is 6.13 the 5.48 forecast 6.88 for 5.12 venice -0.89 park 4.41 new_jersey 4.35 what_is 6.13 the 5.48 forecast 6.88 for 4.28 france -1.12 park 4.41 new_jersey 4.35

N-best list with *hard rejection* of low scoring words:

what_is 6.13 the 5.48 forecast 6.88 for 5.43 ***reject* 0.00** park 4.41 new_jersey 4.35 what_is 6.13 the 5.48 forecast 6.88 for 4.47 ***reject* 0.00** park 4.41 new_jersey 4.35 what_is 6.13 the 5.48 forecast 6.88 for 5.12 ***reject* 0.00** park 4.41 new_jersey 4.35 what_is 6.13 the 5.48 forecast 6.88 for 4.28 ***reject* 0.00** park 4.41 new_jersey 4.35

N-best List Modifications (cont.)

N-best list with *optional rejection*:

 what_is
 6.13
 the
 5.48
 forecast
 6.88
 for
 5.43
 paris
 -0.03
 park
 4.41
 new_jersey
 4.35

 what_is
 6.13
 the
 5.48
 forecast
 6.88
 for
 5.43
 reject
 0.00
 park
 4.41
 new_jersey
 4.35

 what_is
 6.13
 the
 5.48
 forecast
 6.88
 for
 4.47
 hyannis
 -0.61
 park
 4.41
 new_jersey
 4.35

 what_is
 6.13
 the
 5.48
 forecast
 6.88
 for
 4.47
 hyannis
 -0.61
 park
 4.41
 new_jersey
 4.35

 what_is
 6.13
 the
 5.48
 forecast
 6.88
 for
 5.12
 venice
 -0.89
 park
 4.41
 new_jersey
 4.35

 what_is
 6.13
 the
 5.48
 forecast
 6.88
 for
 5.12
 reject
 0.00
 park
 4.41
 new_jersey
 4.35

 what_is
 6.13
 the
 5.48
 forecast
 6.88
 for

Words with poor confidence scores compete with rejected words during natural language understanding search

Example Understanding Parse Tree

Understanding Evaluation

- Confidence scoring rejection evaluated using understanding concept error rate (CER)
- CER computed from substitutions, insertions, and deletions of concept key-value pairs

Understanding Results

- Experimental understanding results on JUPITER
- Original system did not use confidence scores during hypothesis selection in understanding component

Experimental Conditions	Concept Error Rates (CER) (%)				
	Sub	Ins	Del	Total	
Original System	2.2	19.9	6.3	28.5	35% reduction in CER
New System/No Rej.	2.1	18.1	6.1	26.2	
+ optional rejection	1.3	8.9	8.5	18.7	
+ hard rejection	1.0	7.0	10.6	18.6	↓

Sub = Substitution

Ins = Insertion

Del = Deletion

Dialogue Modeling Examples

Aiding the user with additional information:

- -<u>USER:</u> what is the forecast for ***reject*** park new jersey
- <u>KEY_VALUES:</u> WEATHER: forecast UNKNOWN_CITY: *reject* park STATE: new jersey
- <u>RESPONSE</u>: I may not know the city you are asking about.
 I know the following places in New Jersey: Atlantic City,
 Camden, Newark, Piscataway, Princeton, and Trenton.
 Please select one.

More Dialogue Modeling Examples

Guiding the user towards a query that can be handled:

- <u>USER:</u> what is the forecast for *reject* *reject*
- <u>KEY_VALUES</u>: WEATHER: forecast UNKNOWN_CITY: *reject* *reject*
- <u>RESPONSE</u>: I may not know the city you are asking about. Try asking for the state or country. For example: "What cities do you know about in Massachusetts?"

More Dialogue Modeling Examples

Asking for confirmation:

- USER: what is the forecast for *boston*
- <u>KEY_VALUES:</u> WEATHER: forecast CONFIRM_CITY: boston
- <u>RESPONSE</u>: *Did you say Boston?*

- S. Boll, "Suppression of acoustic noise in speech using spectral subtraction," *IEEE Trans. on Acoustic, Speech, and Signal Processing*, April 1979.
- H. Bourlard and S. Dupont, "A new ASR approach based on independent processing and recombination of partial frequency bands," ICSLP, 1996.
- L. Chase, "Word and acoustic confidence annotation for large vocabulary speech recognition," Eurospeech, 1997.
- S. Furui, "Cepstral analysis techniques for automatic speaker verification," *IEEE Trans. on Acoustic, Speech, and Signal Processing*, April 1981.
- M. Gales and S. Young, "Robust continuous speech recognition using parallel model combination," *IEEE Trans. on Acoustic, Speech, and Signal Processing*, September 1996.
- T. Hazen, L. Hetherington, and A. Park, "FST-based recognition techniques for multi-lingual and multi-domain spontaneous speech," Eurospeech, 2001.
- T. Hazen, J. Polifroni and S. Seneff, "Recognition confidence scoring for use in speech understanding systems," *Computer Speech and Language*, January, 2002.

- C. Pao, P. Schmid, and J. Glass, "Confidence scoring for speech understanding," ICSLP, 1998.
- S. Kamppari and T. Hazen, "Word and phone level acoustic confidence scoring," ICASSP, 2000.
- R. Lippman, E. Martin, and D. Paul, "Multi-style training for robust isolated-word speech recognition," ICASSP, 1987.
- C. Ma, M. Randolph, and J. Drish, "A support vector machine-based rejection technique for speech recognition," ICASSP, 2001.
- W. Ward, "Modelling non-verbal sounds for speech recognition," DARPA Speech and Natural Language Workshop, October, 1989.
- A. Wendemuth, G. Rose, and J. Dolfing, "Advances in confidence measures for large vocabulary," ICASSP, 1999.