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Paralinguistic Information Processing

• Prosody
– Pitch tracking
– Intonation, stress, and phrase boundaries
– Emotion

• Speaker Identification
• Multi-modal Processing

– Combined face and speaker ID
– Lip reading & audio-visual speech recognition
– Gesture & multi-modal understanding

Lecture # 23
Session 2003
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Prosody

• Prosody is term typically used to describe the extra-linguistic 
aspects of speech, such as:
– Intonation
– Phrase boundaries
– Stress patterns
– Emotion
– Statement/question distinction

• Prosody is controlled by manipulation of
– Fundamental frequency (F0)
– Phonetic durations & speaking rate
– Energy
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Robust Pitch Tracking

• Fundamental frequency (F0) estimation
– Often referred to as pitch tracking
– Crucial to the analysis and modeling of speech prosody
– A widely studied problem with many proposed algorithms

• One recent two-step algorithm (Wang, 2001)
– Step 1: Estimate F0 and ∆F0 frame each speech frame based on 

harmonic matching
– Step 2: Perform dynamic search with continuity constraints to find 

optimal F0 stream
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Harmonic template

Signal DLFT spectrum
(µlaw-converted)

Discrete Logarithmic Fourier Transform
• Logarithmically sampled narrow-band spectrum

– Harmonic peaks have fixed spacing (logF0 + logN)
– Derive F0 and ∆F0 estimates through correlation
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Two Correlation Functions
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Dynamic Programming Search
• Optimal solution taking into account F0 and ∆F0 constraints
• Search space quantized such that ∆F/F is constant
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The Rhythmic Nature of Speech

• Example using two read digit string types in Chinese
– Random digit strings (5-10 digits per string) 
– Phone numbers (9 digits, e.g., 02 - 435 - 8264)

• Both types show a declination in pitch (i.e. sentence downdrift)
• Phone numbers show a predictable pattern or rhythm



6.345 Automatic Speech Recognition Paralinguistic Information Processing  8

Local Tones vs. Global Intonation

• Position-dependent tone contours in phone numbers

Tone 1 Tone 2

Tone 3 Tone 4
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Characterization of Phrase Contours
• Phrases often carry distinction F0 contours
• Canonical patterns for specific phrases can be observed
• Some research conducted into characterizing prosodic contours

– Phrase boundary markers
– TOBI (Tone and Break Indices) labeling

• Many unanswered questions
– Do phrases have some set of predictable canonical patterns ?
– How does prosodic phrase structures generalize to new utterances?
– Are there interdependencies among phrases in the utterance ? 
– How can prosodic modeling help speech recognition and/or 

understanding ?
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Pilot Study of Phrasal Prosody in JUPITER

• Five phrase types were studied:
– <what_is>:  what is, how is, …
– <tell_me>:   tell me, give me, …
– <weather>:  weather, forecast, dew point, …
– <SU>:           Boston, Monday, ...
– <US>:           Detroit, tonight, …

• Phrases studied with a fixed sentence template:

• Pitch contours for each example phrase were automatically 
clustered into several subclasses

• Mutual information of subclasses can predict which subclasses 
are likely or unlikely to occur together in an utterance 

<what_is> | <tell_me>  the  <weather>  in | for | on  <SU> | <US>



6.345 Automatic Speech Recognition Paralinguistic Information Processing  11

Subclasses Obtained by Clustering

• K-means clustering on training data followed by selection
<what_is>

<tell_me>

<weather>

<SU>

<US>

C1
C7

C4

C6

C0

C3

C4

C0

C1

C3
C0

C2

C3

C1
C7

C2

C4
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Example Utterances
1.

2.

3.
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Mutual Information of Subclasses 

MI = -0.58

MI = 0.67

Subclasses are 
commonly used

together

Subclasses are 
unlikely to occur

together
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Emotional Speech

• Emotional speech is difficult to recognize:
– Neutral speech word error rate in Mercury: 15%
– WER of “happy” speech in Mercury: 25%
– WER of “frustrated” speech: 33%

• Acoustic correlates of emotional/frustrated speech:
– Fundamental frequency variation
– Increased energy
– Speaking rate & vowel duration
– Hyper-articulation
– Breathy sighs

• Linguistic content can also indicate frustration:
– Questions
– Negative constructors
– Derogatory terms
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Spectrograms of an Emotional Pair

feb      ruary  t      wen     t  y       s i              x        th

neutral

frustrated
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Emotion Recognition

• Few studies of automatic emotional recognition exist
• Common features used for utterance-based emotion recognition:

– F0 features: mean, median, min, max, standard deviation
– F0 features: mean positive slope, mean negative slope, std. 

deviation, ratio of rising and falling slopes
– Rhythm features: speaking rate, duration between voiced regions

• Some results:
– 75% accuracy over six classes (happy, sad, angry, disgusted, 

surprised, fear) using only mean and standard deviation of F0 (Huang 
et al, 1998)

– 80% accuracy over fours classes (happy, sad, anger, fear) using 16 
features (Dellaert et al, 1998)
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Speaker Identification

• Speaker verification: Accept or reject claimed identity
– Typically used in applications requiring secure transactions
– Not 100% reliable

* Speech is highly variable and easily distorted
– Can be combined with other techniques 

* Possession of a physical “key”
* Knowledge of a password
* Face ID or other biometric techniques

• Speaker recognition: Identify speaker from set of known speakers
– Typically used when speakers do not volunteer their identity 
– Example applications: 

* Meeting transcription and indexing
* Voice mail summarization
* “Power users” of dialogue system
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Speaker Identification Approaches

• Potential features used for speaker ID
– Formant frequencies (correlated with vocal tract length)
– Fundamental frequency averages and contours
– Phonetic durations and speaking rate
– Word usage patterns
– Spectral features (typically MFCCs) are most commonly used

• Some modeling approaches:
– Text Independent

* Global Gaussian Mixture Models (GMMs) (Reynolds, 1995)
* Phonetically-Structured GMMs

– Text/Recognition Dependent
* Phonetically Classed GMMs
* Speaker Adaptive ASR Scoring (Park and Hazen, 2002)
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Global GMMs

Training
• Input waveforms for speaker “i” 

split into fixed-length frames

Testing
• Input feature vectors scored 

against each speaker GMM

Feature Space

GMM for speaker “i” 
p(xn |Si ) 

• Feature vectors computed 
from each frame of speech

• GMMs trained from set of 
feature vectors 

• One global GMM per speaker

Training
Utterance

p(x1 |Si ) + p(x2 |Si )

• Frame scores for each speaker 
summed over entire utterance

= score for speaker “i”• Highest total score is 
hypothesized speaker

Test
Utterance
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Feature Space

Stops

Phonetically-Structured GMM

• During training, use phonetic transcriptions to train phonetic 
class GMMs for each speaker

Strong Fricatives
Vowels

Phonetically structured
GMM for speaker “i”

• Combine class GMMs into a single “structured” model which 
is then used for scoring as in the baseline system
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phonetic class GMMs
for speaker “i”

fricatives

vowels

stops/
closures

Phonetic Classing

• Train independent phone class GMMs w/o combination
• Generate word/phone hypothesis from recognizer

Test
Utterance

SUMMIT

f ih f ttcl iy Word hypothesisf f

x1 x3

ih iy

x2 x6

ttcl

x4 x5

Σ p(xn |Si,class(xn)) = score for speaker “i”

• Score frames with class models of hypothesized phones
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Speaker Adapted Scoring

• Train speaker-dependent (SD) models for each speaker

• Rescore hypothesis with SD models
• Compute total speaker adapted score by interpolating SD 

score with SI score

• Get best hypothesis from recognizer using speaker-
independent (SI) models

SD models
for 

speaker “i”

),|(pSD inn Sux SD Model

SUMMIT
(SI models)

Test
utterance

)|(pSI nn ux SI Model

“fifty-five”
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Two Experimental Corpora

Corpus

Description

Type of 
Speech

# Speakers

Recording 
Conditions

Training Data

Test Set Size

YOHO

LDC corpus for speaker 
verification evaluation

Prompted Text
“Combination lock” phrases

(e.g. “34-25-86”)

138 (106M, 32F)

Fixed telephone handset
Quiet office environment

8kHz band-limited

96 utterances
From 4 sessions

(~3 seconds each)

5520

Mercury

SLS corpus from
air-travel system

Spontaneous
conversational speech

in air-travel domain

38 (18M, 20F)

Variable telephone
Variable environment
Telephone channel

50-100 utterances
From 2-10 sessions

(variable length)

3219
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Single Utterance Results

• Experiment: closed set speaker recognition on single utterances
• Results:

• All approaches about equal on YOHO corpus
• Speaker adaptive approach has poorest performance on Mercury

– ASR recognition errors can degrade speaker ID performance
• Classifier combination yields improvements over best system

Speaker ID Error Rate%
System

YOHO Mercury
Structured GMM (SGMM) 0.31 21.3

Phone Classing 0.40 21.6
Speaker Adaptive (SA) 0.31 27.8

SA+SGMM 0.25 18.3
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Results on Multiple Mercury Utterances

• On multiple utterances, speaker adaptive scoring achieves lower 
error rates than next best individual method

• Relative error rate reductions of 28%, 39%,  and 53% on 3, 5, and 10 
utterances compared to baseline

11.6 %

5.5 %

14.3 %

10.3 %

13.1 %

7.4 %
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Multi-modal Interfaces

• Multimodal interfaces will enable more natural, flexible, efficient, 
and robust human-computer interaction
– Natural: Requires no special training 
– Flexible: Users select preferred modalities
– Efficient: Language and gestures can be simpler than in uni-modal 

interfaces (e.g., Oviatt and Cohen, 2000)
– Robust: Inputs are complementary and consistent

• Audio and visual signals both contain information about:
– Identity of the person: Who is talking?
– Linguistic message: What are they saying?
– Emotion, mood, stress, etc.: How do they feel?

• Integration of these cues can lead to enhanced capabilities for 
future human computer interfaces
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Face/Speaker ID on a Handheld Device

• An iPaq handheld with Audio/Video Input/Output has been 
developed as part of MIT Project Oxygen

• Presence of multiple-input channels enables multi-modal 
verification schemes

• Prototype system uses a login scenario
– Snap frontal face image
– State name
– Recite prompted lock combination phrase
– System accepts or rejects user
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Face Identification Approach

• Face Detection by Compaq/HP 
(Viola/Jones, CVPR 2001)
– Efficient cascade of classifiers

• Face Recognition by MIT AI 
Lab/CBCL (Heisele et al, ICCV 2001)
– Based on Support Vector Machines 

(SVM)
– Runtime face recognition: score 

image against each SVM classifier
• Implemented on iPaq handheld as 

part of MIT Project Oxygen (E. 
Weinstein, K. Steele, P. Ho, D. 
Dopson)
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Combined Face/Speaker ID

• Multi-modal user login verification experiment using iPaq
• Enrollment data:

– Training data collected from 35 enrolled users
– 100 facial images and 64 lock combination phrases per user

• Test data:
– 16 face/image pairs from 25 enrolled users
– 10 face/image pairs from 20 non-enrolled imposters

• Evaluation metric: verification equal error rate (EER)
– Equal likelihood of false acceptances and false rejections
– Fused system reduces equal error rate by 50%

System Equal Error Rate
Face ID Only 7.30%

Speech ID Only 1.77%
Fused System 0.89%
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How can we improve ASR performance?

• Humans utilize facial expressions and gestures to augment 
the speech signal

• Facial cues can improve speech recognition in noise by up to 
30 dB, depending on the task

• Speech recognition performance can be improved by 
incorporating facial cues (e.g., lip movements and mouth 
opening)

• Figure shows human 
recognition performance
– Low signal-to-noise ratios 
– Presented with audio with 

video and audio only
– Reference: Benoit, 1992
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Audio Visual Speech Recognition (AVSR)

• Integrate information about visual mouth/lip/jaw features with 
features extracted from audio signal 

• Visual feature extraction:
– Region of Interest (ROI): mostly lips and mouth; some tracking
– Features: pixel-, geometric-, or shape-based
– Almost all systems need to locate and track landmark points
– Correlation and motion information not used explicitly 

Example of pixel-based features (Covell & Darrell, 1999)
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AVSR: Preliminary Investigations

• Goal: integration with SUMMIT ASR system
• Visually-derived measurements based on optical flow

• Low-dimensional features represent opening & elongation
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Issues with Audio/Visual Integration

• Early vs. Late Integration
– Early:  concatenate feature vectors from different modes
– Late:  combine outputs of uni-modal classifiers

* Can be at many levels (phone, syllable, word, utt)
• Channel Weighting Schemes

– Audio channel usually provides more information
– Based on SNR estimate for each channel
– Preset weights by optimizing the error rate of a dev. set
– Estimate separate weights for each phoneme or viseme

• Modeling the audio/visual asynchrony
– Many visual cues occur before the phoneme is actually pronounced
– Example:  rounding lips before producing rounded phoneme
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AVSR: State of the Art

• Example: Neti et al, 2000 (JHU Summer Workshop)
– >10K word vocabulary
– Training and development data: 264 subjects, 40 hours
– Test data: 26 subjects, 2.5 hours
– Quiet (19.5 dB SNR) and noisy (8.5 dB SNR) conditions

Conditions Clean WER (%) Noisy WER (%)
Audio Only 14.4 48.1
AVSR 13.5 35.3

Conditions Clean WER (%) Noisy WER (%)
Audio Only 14.4 48.1
AVSR 13.5 35.3
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Multi-modal Interaction Research
• Understanding the science

– How do humans do it (e.g. expressing cross modality context)?
– What are the important cues? 

• Developing an architecture that can adequately describe the 
interplays of modalities
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Multi-modal Interfaces

• Timing information is a useful way to relate inputs

Does this mean 
“yes,” “one,” or 
something else?

• Inputs need to be understood in the proper context

Where is she looking or 
pointing at while saying 
“this” and “there”?

Move this one 
over there

Are there any 
over here?

What does he mean by “any,” 
and what is he pointing at?
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Multi-modal Fusion: Initial Progress

• All multi-modal inputs are synchronized
– Speech recognizer generates absolute times for words
– Mouse and gesture movements generate {x,y,t} triples

• Speech understanding constrains gesture interpretation
– Initial work identifies an object or a location from gesture inputs
– Speech constrains what, when, and how items are resolved
– Object resolution also depends on information from application

Speech: “Move this one over here”

Pointing: (object)        (location)                        

time
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Multi-modal Demonstration

• Manipulating planets in a 
solar-system application

• Continuous tracking of 
mouse or pointing gesture

• Created w. SpeechBuilder 
utility with small changes 
(Cyphers, Glass, Toledano & 
Wang)

• Standalone version runs with 
mouse/pen input

• Can be combined with 
gestures from determined 
from vision (Darrell & 
Demirdjien)
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OUTPUT
GENERATION

OUTPUT
GENERATION

DIALOGUE
MANAGEMENT

DIALOGUE
MANAGEMENT

CONTEXT
RESOLUTION

CONTEXT
RESOLUTION

LANGUAGE
UNDERSTANDING

LANGUAGE
UNDERSTANDING

SPEECH
RECOGNITION

SPEECH
RECOGNITION

MULTI-MODAL
SERVER

MULTI-MODAL
SERVER

SPEECH
UNDERSTANDING

SPEECH
UNDERSTANDING

Recent Activities: Multi-modal Server

• General issues:
– Common meaning representation
– Semantic and temporal compatibility
– Meaning fusion mechanism
– Handling uncertainty

GESTURE
UNDERSTANDING

GESTURE
UNDERSTANDING • • •PEN-BASED

UNDERSTANDING
PEN-BASED

UNDERSTANDING
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Summary 

• Speech carries paralinguistic content:
– Prosody, intonation, stress, emphasis, etc.
– Emotion, mood, attitude,etc.
– Speaker specific characteristics

• Multi-modal interfaces can improve upon speech-only systems
– Improved person identification using facial features
– Improved speech recognition using lip-reading
– Natural, flexible, efficient, and robust human-computer interaction
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