Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science

6.432 Stochastic Processes, Detection and Estimation

Recitation 2 Outline

February 11, 2004

Diagonalization of Symmetric Matrices

- 1. Review: eigenvalues, eigenvectors, and diagonalization
- 2. Proof: symmetric matrices have real eigenvalues
- 3. Proof: symmetric matrices have a complete orthogonal set of eigenvectors
 - Simple proof for distinct eigenvalues
 - Brief introduction to Householder reflections
 - Induction proof valid for repeated eigenvalues
 - Intuition: eigenvalues and eigenvectors are continuous functions of matrix entries

Symmetric Positive Definite and Semidefinite Matrices

- 1. Geometry of quadratic forms
 - Conditions on eigenvalues for positive (semi)definite matrices
 - Example: finding equiprobable contours for the two dimensional Gaussian distribution with inverse covariance

$$\Lambda_x^{-1} = \left[\begin{array}{cc} 2 & 1 \\ 1 & 2 \end{array} \right]$$

- 2. Matrix square roots
 - Definition and construction from diagonalization
 - Nonuniqueness and the unique symmetric, positive semidefinite square root

3. Applications of square roots

- Simulation (shaping)
- Decorrelation (whitening)
- 4. Principal components analysis (PCA)
 - Definition and relation to eigendecomposition
 - Direct calculation from empirical data via the singular value decomposition (SVD)