MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.436J/15.085J

Fall 2008
Problem Set 1

Readings:

(a) Notes from Lecture 1
(b) Handout on background material on sets and real analysis (Recitation 1).

Supplementary readings:

[GS], Sections 1.1-1.3.
[W], Sections 1.0-1.5, 1.9.

Exercise 1.

(a) Show that the union of countably many countable sets is countable.
(b) A real number x is rational if $x=m / n$, where m is an integer and n is a nonzero integer. Show that the set of rational numbers \mathbb{Q} is countable.

Exercise 2. Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be real sequences that converge to x and y, respectively. Provide a formal proof of the fact that $x_{n} y_{n}$ converges to $x y$.

Exercise 3. We are given a function $f: A \times B \rightarrow \Re$, where A and B are nonempty sets.
(a) Assuming that the sets A and B are finite, show that

$$
\max _{x \in A} \min _{y \in B} f(x, y) \leq \min _{y \in B} \max _{x \in A} f(x, y) .
$$

(b) For general nonempty sets (not necessarily finite), show that

$$
\sup _{x \in A} \inf _{y \in B} f(x, y) \leq \inf _{y \in B} \sup _{x \in A} f(x, y) .
$$

Exercise 4. Let $\left\{A_{n}\right\}$ be a sequence of sets. Show that $\lim _{n \rightarrow \infty} A_{n}=A$ if and only $\lim _{n \rightarrow \infty} I_{A_{n}}(\omega)=I_{A}(\omega)$ for all ω.

Exercise 5. (The union bound) Let (Ω, \mathcal{F}) be a measurable space, and consider a sequence $\left\{A_{i}\right\}$ of \mathcal{F}-measurable sets, not necessarily disjoint. Show that

$$
\mathbb{P}\left(\bigcup_{i=1}^{\infty} A_{i}\right) \leq \sum_{i=1}^{\infty} \mathbb{P}\left(A_{i}\right)
$$

Hint: Express $\cup_{i=1}^{\infty} A_{i}$ as a countable union of disjoint sets.

Exercise 6. Let $\Omega=\mathbb{N}$ (the positive integers), and let \mathcal{F}_{0} be the collection of subsets of Ω that either have finite cardinality or their complement has finite cardinality. For any $A \in \mathcal{F}_{0}$, let $\mathbb{P}(A)=0$ if A is finite, and $\mathbb{P}(A)=1$ if A^{c} is finite.
(a) Show that \mathcal{F}_{0} is a field but not a σ-field.
(b) Show that \mathbb{P} is finitely additive on \mathcal{F}_{0}; that is, if $A, B \in \mathcal{F}_{0}$, and A, B are disjoint, then $\mathbb{P}(A \cup B)=\mathbb{P}(A)+\mathbb{P}(B)$.
(c) Show that \mathbb{P} is not countably additive on \mathcal{F}_{0}; that is, construct a sequence of disjoint sets $A_{i} \in \mathcal{F}_{0}$ such that $\cup_{i=1}^{\infty} A_{i} \in \mathcal{F}_{0}$ and $\mathbb{P}\left(\cup_{i=1}^{\infty} A_{i}\right) \neq \sum_{i=1}^{\infty} \mathbb{P}\left(A_{i}\right)$.
(d) Construct a decreasing sequence of sets $A_{i} \in \mathcal{F}_{0}$ such that $\cap_{i=1}^{\infty} A_{i}=\emptyset$ for which $\lim _{n \rightarrow \infty} \mathbb{P}\left(A_{i}\right) \neq 0$.

MIT OpenCourseWare
http://ocw.mit.edu

6.436J / 15.085J Fundamentals of Probability

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

