MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.436J/15.085J	Fall 2008
Problem Set 1	due 9/8/2008

Readings:

(a) Notes from Lecture 1(b) Handout on background material on sets and real analysis (Recitation 1).

Supplementary readings:

[GS], Sections 1.1-1.3. [W], Sections 1.0-1.5, 1.9.

Exercise 1.

- (a) Show that the union of countably many countable sets is countable.
- (b) A real number x is rational if x = m/n, where m is an integer and n is a nonzero integer. Show that the set of rational numbers \mathbb{Q} is countable.

Exercise 2. Let $\{x_n\}$ and $\{y_n\}$ be real sequences that converge to x and y, respectively. Provide a formal proof of the fact that x_ny_n converges to xy.

Exercise 3. We are given a function $f : A \times B \to \Re$, where A and B are nonempty sets.

(a) Assuming that the sets A and B are finite, show that

$$\max_{x \in A} \min_{y \in B} f(x, y) \le \min_{y \in B} \max_{x \in A} f(x, y).$$

(b) For general nonempty sets (not necessarily finite), show that

$$\sup_{x \in A} \inf_{y \in B} f(x, y) \le \inf_{y \in B} \sup_{x \in A} f(x, y).$$

Exercise 4. Let $\{A_n\}$ be a sequence of sets. Show that $\lim_{n\to\infty} A_n = A$ if and only $\lim_{n\to\infty} I_{A_n}(\omega) = I_A(\omega)$ for all ω .

Exercise 5. (The union bound) Let (Ω, \mathcal{F}) be a measurable space, and consider a sequence $\{A_i\}$ of \mathcal{F} -measurable sets, not necessarily disjoint. Show that

$$\mathbb{P}\Big(\bigcup_{i=1}^{\infty} A_i\Big) \le \sum_{i=1}^{\infty} \mathbb{P}(A_i).$$

Hint: Express $\bigcup_{i=1}^{\infty} A_i$ as a countable union of disjoint sets.

Exercise 6. Let $\Omega = \mathbb{N}$ (the positive integers), and let \mathcal{F}_0 be the collection of subsets of Ω that either have finite cardinality or their complement has finite cardinality. For any $A \in \mathcal{F}_0$, let $\mathbb{P}(A) = 0$ if A is finite, and $\mathbb{P}(A) = 1$ if A^c is finite.

- (a) Show that \mathcal{F}_0 is a field but not a σ -field.
- (b) Show that P is finitely additive on *F*₀; that is, if *A*, *B* ∈ *F*₀, and *A*, *B* are disjoint, then P(*A* ∪ *B*) = P(*A*) + P(*B*).
- (c) Show that \mathbb{P} is not countably additive on \mathcal{F}_0 ; that is, construct a sequence of disjoint sets $A_i \in \mathcal{F}_0$ such that $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}_0$ and $\mathbb{P}(\bigcup_{i=1}^{\infty} A_i) \neq \sum_{i=1}^{\infty} \mathbb{P}(A_i)$.
- (d) Construct a decreasing sequence of sets A_i ∈ F₀ such that ∩[∞]_{i=1}A_i = Ø for which lim_{n→∞} P(A_i) ≠ 0.

6.436J / 15.085J Fundamentals of Probability Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.