MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.436J/15.085J	Fall 2008
Problem Set 2	due 9/15/2008

Readings: Notes from Lectures 2 and 3 (not responsible for the Appendix in Lecture 2). To better understand the material, try the various exercises in the lecture notes.

Optional readings:

(a) Sections 1.4-1.7 of [Grimmett & Stirzaker]
(b) Sections 1.3-1.5 of [Bertsekas & Tsitsiklis] (http://athenasc.com/Prob-2nd-Ch1.pdf), including the end of chapter problems.
(c) Chapter 1 of [Williams], for the details of the construction of Lebesgue measure.

Exercise 1. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, and let A_1, A_2, \ldots be a sequence of \mathcal{F} -measurable sets.

- (a) Prove that P(lim inf_{n→∞} A_n) ≤ lim inf_{n→∞} P(A_n). *Hint:* Recall that lim inf_n A_n = ∪[∞]_{k=1} ∩[∞]_{n=k} A_n is the set of outcomes that belong to all but finitely many A_n, and use various monotonicity and continuity properties of probabilities.
- (b) Can you come up with a probability model and a sequence of events for which the inequality in (a) is strict?
- (c) Taking for granted the symmetrical inequality

$$\mathbb{P}(\limsup_{n \to \infty} A_n) \ge \limsup_{n \to \infty} \mathbb{P}(A_n),$$

show that if $\lim_n A_n = A$, then $\lim_{n\to\infty} \mathbb{P}(A_n) = \mathbb{P}(A)$. *Hint:* Recall that $\lim_n A_n = A$ means $A = \liminf_n A_n = \limsup_n A_n$. Of course, if the sequence of sets A_n were monotonic, this result would be a special case of the continuity properties of probability measures proved in the Lecture 1 notes.

Exercise 2. We have defined the Borel sets in I = (0, 1] to be the σ -field generated by the intervals of the form $(a, b] = \{x \in I \mid a < x \le b\}$.

(a) Show that an open interval $(a, b) = \{x \in I \mid a < x < b\}$ is a Borel set.

- (b) A subset S of I is said to be **open** if for every x ∈ S, there exists an open interval (a, b) which is contained in S and which contains x. (Intuitively, for every x ∈ S, S contains an "open neighborhood" of x.) Show that if S is open and is contained in I, then S is a Borel set.
- (c) Show that the σ -field generated by the open sets is the same as the Borel σ -field.

Hint: Express S as a union of intervals with rational endpoints.

Exercise 3. Suppose that the events A_n satisfy $\mathbb{P}(A_n) \to 0$ and $\sum_{n=1}^{\infty} \mathbb{P}(A_n^c \cap A_{n+1}) < \infty$. Show that $\mathbb{P}(A_n \text{ i.o.}) = 0$. *Note:* A_n i.o., stands for " A_n occurs infinitely often", or "infinitely many of the A_n occur", or just $\limsup_n A_n$. *Hint:* Borel-Cantelli.

Exercise 4. Let A_n be a sequence of independent events with $\mathbb{P}(A_n) < 1$ for all n, and $\mathbb{P}(\bigcup_n A_n) = 1$. Show that $\mathbb{P}(A_n \text{ i.o.}) = 1$. Note: A_n i.o., stands for " A_n occurs infinitely often", or "infinitely many of the A_n occur", or just $\limsup_n A_n$. Hint: Borel-Cantelli.

Exercise 5. Consider an infinite number of independent tosses of a coin. Each toss has probability p, with 0 , of resulting in heads. We say that "a run of length <math>k occurs" if the sequence of heads and tails obtained includes k consecutive heads. Prove that the probability of the following event is 1: "for every k > 0, a run of length k occurs"

(Your proof need not be extremely detailed, but should involve precise mathematical statements.)

Exercise 6. Suppose that A, B, and C are independent events. Use the definition of independence to show that A and $B \cup C$ are independent.

Exercise 7. Consider a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, and let A be an event (element of \mathcal{F}). Let \mathcal{G} be the set of all events that are independent from A. Show that \mathcal{G} need not be a σ -field.

Exercise 8. Let A, B, A_1, A_2, \ldots be events. Suppose that for each k, we have $A_k \subseteq A_{k+1}$, and that B is independent of A_k . Let $A = \bigcup_{k=0}^{\infty} A_k$. Show that B is independent of A.

6.436J / 15.085J Fundamentals of Probability Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.