MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.436J/15.085J	Fall 2008
Problem Set 6	due 10/17/2008

Readings: Notes for lecture 10.

Recommended readings: Sections 3.6, 4.2 of [BT, 1st edition], or Section 4.1 of [BT, 2nd edition]; Sections 4.7-4.8 of [GS].

Exercise 1. Suppose that X and Y are independent and uniformly distributed on [0, 1]. Find the PDF of $Z = \max\{X^2, Y\}$.

Exercise 2. Consider two independent and identically distributed discrete random variables X and Y. Assume that their common PMF, denoted by p(x), is symmetric around zero, i.e., p(x) = p(-x) for all x. Show that the PMF of X + Y is also symmetric around zero and is largest at zero. *Hint:* Use the Schwarz inequality: $\sum_{k} (a_k b_k) \leq (\sum_k a_k^2)^{1/2} (\sum_k b_k^2)^{1/2}$.

Exercise 3. Assuming that X_1, \ldots, X_n are independent with common density function f, establish that the joint distribution of $X^{(1)}, \ldots, X^{(n)}$ is given by

$$f_{X^{(1)},\dots,X^{(n)}}(x_1,\dots,x_n) = n! f(x_1) \cdots f(x_n), \qquad x_1 < x_2 < \dots < x_n,$$

and $f_{X^{(1)},\ldots,X^{(n)}}(x_1,\ldots,x_n) = 0$, otherwise. Use this to derive the densities for $\max_j X_j$ and $\min_j X_j$.

Exercise 4. Let X and Y be independent exponential random variables with parameter $\lambda = 1$. That is, $f_X(t) = f_Y(t) = e^{-t}$, for $t \ge 0$. Let

$$U = X^2, \qquad V = X^2 + Y.$$

Find the joint PDF of U and V.

Exercise 5. Let X and Y be independent exponential random variables with parameters λ and μ , respectively. Find the joint PDF of U = X + Y and V = X/(X + Y), and then the marginal PDF of V.

Exercise 6. Suppose that X and Y are independent and identically distributed, and not necessarily continuous random variables. Show that X + Y cannot be uniformly distributed on [0, 1].

Exercise 7. Let X and Y be independent exponential random variables with parameter equal to 1. Let S = X + Y, D = X - Y, and R = X/Y.

- (a) Find the conditional PDF $f_{X|D}(x \mid 0)$.
- (b) Find the conditional PDF $f_{X|R}(x \mid 1)$.
- (c) Note that the events $\{D = 0\}$ and $\{R = 1\}$ coincide. In view of this should the answers to (a) and (b) be the same? Are they?

6.436J / 15.085J Fundamentals of Probability Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.