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MASSACHUSETTS INSTITUTE OF TECHNOLOGY 
6.436J/15.085J Fall 2008 
Problem Set 7 due 10/29/2008 

Readings: Notes for lectures 11-13 (you may skip the proofs in the notes for 
lecture 11). 

Optional additional readings: 

∞

Adams & Guillemin, Sections 2.2-2.3, skim Section 2.5.

For a full development of this material, see [W], Sections 5.1-5.9, 6.0-6.3, 6.5,

6.12, 8.0-8.4.


Exercise 1. Show that if g : Ω → [0, ∞] satisfies g dµ < ∞, then g < ∞, 
a.e. (i.e., the set {ω | g(ω) = ∞} has zero measure). 

Exercise 2. Let (Ω, F , P) be a probability space. Let g : Ω → R be a nonneg
ative measurable function. Let λ be the Lebesgue measure. Let f be a nonneg

∞

ative measurable function on the real line such that f dλ = 1. For any Borel 
set A, let P1(A) = A f dλ. Prove that P1 is a probability measure. 

Exercise 3. (Impulses and Impulse Trains) 
Consider the real line, endowed with the Borel σ-field. For any c ∈ R, we define 
the Dirac measure (“unit impulse”) at c, denoted by δc, to be the probability 
measure that satisfies δc(c) = 1. If we “place a Dirac measure” at each integer, 

n=1 n=1we are led to the measure µ =
 , that is, µ(A) =
 (A), for every
δn δn

[0 ] ( )R we have g dδ =∞ g c, ., c→ 

∞

Borel set A. (Thus, µ corresponds to an “impulse train” in engineering parlance. 
It is also a “counting measure”, in that it just counts the number of integers in a 
set A.) 

The statements below are all fairly “obvious” properties of impulses. Your 
task is to provide a formal proof, being careful to use just the definitions above, 
the general definition of an integral (as a limit using simple functions), and the 
property that if two functions are equal except on a set of measure zero, then 
their integrals are equal. 

(a) For any nonnegative (not necessarily simple) measurable function g : 

(b) For any nonnegative (not necessarily simple) measurable function g : 

n=1 g(n).R → [0, ∞], we have

tion is a special case of integration.)


g dµ =
 (This shows that summa
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Exercise 4. (Interchanging summations and limits) 
Suppose that the numbers aij , ci have the following properties: 
(i) For every i, the limit limj→∞ aij exists; 
(ii) For all i, j, we have aij ≤ ci; 
(iii) 

�∞
i=1 ci < ∞. 

| | 

Use the Dominated Convergence Theorem and a suitable measure to show 
that �∞ ∞

lim aij = lim aij . 
j→∞ 

i=1 i=1 
j→∞ 

Exercise 5. (An alternative way of developing integration theory) 
We developed in class the standard definition of the integral g dP using ap
proximations by simple functions. Let us forget all that and develop a new 
approach from scratch. 

Let (Ω, F , P) be a probability space. Let (R, B, λ) be the real line, endowed 
with the Borel σ-field, and the Lebesgue measure. We consider the product of 
these two spaces, and the associated product measure µ on (Ω × R, F × B). 
For any nonnegative random variable X , we define AX = {(ω, x) | 0 ≤ 
x < X(ω)}, and define E[X] = µ(AX ). (This definition turns out to be 
equivalent to the standard definition.) The set A is indeed measurable since � 
A = q∈Q{(ω, x) | 0 ≤ x < q < X(ω)}, and each of the sets in the union are 
measurable since X is a random variable. 

Using the new definition, we would like to verify that various properties of 
the expectation are easily derived. 

Let X , Y be nonnegative random variables. Show the following properties, 
using just the above definition and basic properties of measures, but no other 
facts from integration theory. 

(a) If we have two nonnegative random variables with P(X = Y ) = 1, then 
E[X] = E[Y ]. 

(b) If Y is a nonnegative random variable and E[Y ] = 0, then P(Y = 0) = 1. 

(c) If X(ω) ≤ Y (ω) for all ω ∈ Ω, then E[X] ≤ E[Y ]. 

(d) (Monotone convergence theorem) Let Xn be an increasing sequence of 
nonnegative random variables, whose limit is X . Show that limn→∞ E[Xn] 
E[X]. Hint: This is really easy: use continuity of measures on the sets 

→ 

AXn . 

All this looks pretty simple, so you may wonder why this is not done in most 
textbooks. The answer is twofold: (i) developing some of the other properties, 
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such as linearity, is not as straightforward; (ii) the construction of the product 
measure, when carried out rigorously is quite involved. 

Exercise 6. Suppose that X is a nonnegative random variable and that E[esX ] < 
∞ for all s ∈ (−∞, a], where a is a positive number. Let k be a positive integer. 

(a) Show that E[Xk] < ∞. 

(b) Show that E[XkesX ] < ∞, for every s < a. 

(c) Suppose that h > 0. Show that (ehX − 1)/h ≤ XehX . 

(d) Use the DCT to argue that � ehX − 1� E[ehX ] − 1
E[X] = E lim = lim . 

h 0 h h 0 h↓ ↓
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