MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Readings: Notes for Lectures 14-16.

Optional Readings:

[GS] Section 4.9 (multivariate normal)
[GS] Sections 5.7-5.8 (characteristic functions)
Exercise 1. Let X be a random variable with mean, variance, and moment generating function), denoted by $\mathbb{E}[X], \operatorname{var}(X)$, and $M_{X}(s)$, respectively. Similarly, let Y be a random variable associated with $\mathbb{E}[X], \operatorname{var}(X)$, and $M_{X}(s)$. Each part of this problem introduces a new random variable Q, H, G, D. Determine the means and variances of the new random variables, in terms of the means, and variances of X and Y.
(a) $M_{Q}(s)=\left[M_{X}(s)\right]^{5}$.
(b) $M_{H}(s)=\left[M_{X}(s)\right]^{3}\left[M_{Y}(s)\right]^{2}$.
(c) $M_{G}(s)=e^{6 s} M_{X}(s)$.
(d) $M_{D}(s)=M_{X}(6 s)$.

Exercise 2. A random (nonnegative integer) number of people K, enter a restaurant with n tables. Each person is equally likely to sit on any one of the tables, independently of where the others are sitting. Give a formula, in terms of the moment generating function $M_{K}(\cdot)$, for the expected number of occupied tables (i.e., tables with at least one customer).

Exercise 3. Suppose that

$$
\begin{equation*}
\limsup _{x \rightarrow \infty} \frac{\log \mathbb{P}(X>x)}{x} \triangleq-\nu<0 . \tag{1}
\end{equation*}
$$

Establish that $M_{X}(s)<\infty$ for all $s \in[0, \nu)$.
Exercise 4. Suppose that X, Z_{1}, \ldots, Z_{n} have a multivariate normal distribution, and X has zero mean. Furthermore, suppose that Z_{1}, \ldots, Z_{n} are independent. Show that $\mathbb{E}\left[X \mid Z_{1}, \ldots, Z_{n}\right]=\sum_{i=1}^{n} \mathbb{E}\left[X \mid Z_{i}\right]$.

Exercise 5. Let X, W_{1}, \ldots, W_{n} be independent normal random variables, with $\mathbb{E}[X]=\mu, \operatorname{var}(X)=\sigma_{0}^{2}, \mathbb{E}\left[W_{i}\right]=0, \operatorname{var}\left(W_{i}\right)=\sigma_{i}^{2}$. We want to estimate X on the basis of noisy observations of the form $Y_{i}=X+W_{i}$. Derive the formula for $\mathbb{E}\left[X \mid Y_{1}, \ldots, Y_{n}\right]$.

Exercise 6. Suppose that the multivariate characteristic function of two random variables X and Y is factorable; that is, there exist functions ϕ_{1} and ϕ_{2} such that $\phi_{X, Y}(s, t)=\phi_{1}(t) \cdot \phi_{2}(s)$, for all s, t. Show that X and Y are independent. Hint: Recall the proof of independence for multivariate Gaussians, and argue similarly.

Exercise 7.

(a) Find $\phi_{X}(t)$ if X is a $\operatorname{Bernoulli}(p)$ random variable.
(b) Suppose that $\phi_{X_{i}}=\cos \left(t / 2^{i}\right)$. What is the distribution of X_{i} ?
(c) Let X_{1}, X_{2}, \ldots be independent and let $S_{n}=X_{1}+\cdots+X_{n}$. Suppose that S_{n} converges almost surely to some random variable S. Show that $\phi_{S}(t)=\prod_{i=1}^{\infty} \phi_{X_{i}}(t)$.
(d) Evaluate the infinite product $\prod_{i=1}^{\infty} \cos \left(t / 2^{i}\right)$. Hint: Think probabilistically; the answer is a very simple expression.

MIT OpenCourseWare
http://ocw.mit.edu

6.436J / 15.085J Fundamentals of Probability

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

