MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Exercise 1. Let $\left\{X_{n}\right\}$ be a sequence of random variables defined on the same probability space.
(a) Suppose that $\lim _{n \rightarrow \infty} \mathbb{E}\left[\left|X_{n}\right|\right]=0$. Show that X_{n} converges to zero, in probability.
(b) Suppose that X_{n} converges to zero, in probability, and that for some constant c, we have $\left|X_{n}\right| \leq c$, for all n, with probability 1 . Show that

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left[\left|X_{n}\right|\right]=0
$$

(c) Suppose that each X_{n} can only take the values 0 and 1 and, that $\mathbb{P}\left(X_{n}=1\right)=$ $1 / n$.
(i) Given an example in which we have almost sure convergence of X_{n} to 0 .
(ii) Given an example in which we do not have almost sure convergence of X_{n} to 0 .

Exercise 2. Let X_{1}, X_{2}, \ldots be a sequence of independent random variables that are uniformly distributed between 0 and 1 . For every n, we let Y_{n} be the median of the values of $X_{1}, X_{2}, \ldots, X_{2 n+1}$. [That is, we order $X_{1}, \ldots, X_{2 n+1}$ in increasing order and let Y_{n} be the $(n+1)$ st element in this ordered sequence.] Show that that the sequence Y_{n} converges to $1 / 2$, in probability.
Extra credit: Prove that $Y_{n} \xrightarrow{\text { a.s. }} Y$.
Exercise 3. Let X_{1}, X_{2}, \ldots be continuous random variables with probability density functions (PDFs) $f_{X_{1}}, f_{X_{2}}, \ldots$
(a) Suppose that $\lim _{k \rightarrow \infty} f_{X_{k}}(x)=g(x)$, for all $x \in \Re$. Invoke a certain result on integration to show that $\int_{-\infty}^{\infty} g(x) d x \leq 1$, and give an example to show that g need not be a PDF.
(b) Suppose that:
(i) $\lim _{k \rightarrow \infty} f_{X_{k}}(x)=f_{X}(x)$, for all $x \in \Re$, where f_{X} is the PDF of some random variable X, and
(ii) we have $f_{X_{k}}(x) \leq h(x)$, for all $x \in \Re$, where h is a function that satisfies $\int_{-\infty}^{\infty} h(x) d x<\infty$.

Show that X_{k} converges to X, in distribution.
Note: The result of part (b) is actually true without the boundendness assumption, but the proof is harder.

Exercise 4. The following fact is known, and can be used in this problem: if a sequence of normal random variables X_{k} converges in distribution to a random variable X, then X is normal.

Suppose that for every k, the pair $\left(X_{k}, Y\right)$ has a bivariate normal distribution. Furthermore, suppose that the sequence X_{k} converges to X, almost surely. Show that (X, Y) has a bivariate normal distribution. Hint: Use the "right" definition of the bivariate normal.

Exercise 5. Let X_{1}, X_{2}, \ldots be a sequence of i.i.d. normal random variables, with zero mean and unit variance. The corresponding characteristic function is $\mathbb{E}\left[e^{i t X_{1}}\right]=e^{-t^{2} / 2}$. We would like to define a new random variable

$$
\sum_{k=1}^{\infty} \frac{X_{k}}{2^{k}}
$$

More precisely, we need to consider the finite sum

$$
Y_{n}=\sum_{k=1}^{n} \frac{X_{k}}{2^{k}}
$$

and investigate whether it converges to a limit in some sense.
(a) Use transforms to prove that Y_{n} converges in distribution, and to identify the nature of the limit distribution. (Please state the facts that you are using.)
(b) Prove that Y_{n} converges to a random variable Y which is finite, with probability one. Hint: Consider the sum of $\left|X_{k}\right| / 2^{k}$.

Exercise 6. (a) Consider two sequences of random variables, $\left\{X_{i}\right\}$ and $\left\{Y_{i}\right\}$. Suppose that X_{i} converges to $a \in \mathbb{R}$, in probability, and Y_{i} converges to $b \in \mathbb{R}$, in probability. Show that $X_{i}+Y_{i}$ converges to $a+b$, in probability.
(b) Suppose that $\left\{X_{i}\right\}$ is a sequence of independent identically distributed random variables that converges in probability to a random variable X. Show that X must be a constant almost surely.

MIT OpenCourseWare
http://ocw.mit.edu

6.436J / 15.085J Fundamentals of Probability

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

