MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Fall 2008	6.436J/15.085J
Final exam, 1:30–4:30pm, (180 mins/100 pts)	12/18/08

Whenever asked to explain or justify an answer, a formal proof is not needed, but just a brief explanation.

Problem 1: (30 points)

Consider the Markov chain shown in the figure. Each time that state i is visited, an independent random reward is obtained which is a normal random variable with mean i and variance 4. More precisely, the reward W_n obtained at time n, has a conditional PDF (given the past history), which is N(i, 4).

- (a) How many invariant distributions are there?
- (b) Starting from state 1, what is the probability that the chain eventually visits state 5?
- (c) Suppose that $X_0 = 4$. Does X_n converge almost surely? In distribution?
- (d) Find $\mathbf{P}(X_n = 4 \mid X_{n+1} = 5, X_1 = 4)$, in the limit of very large n.
- (e) Consider the average reward $R_n = (W_1 + \dots + W_n)/n$. Conditioned on $X_0 = 3$, does R_n converge almost surely? If yes, to what? (A number or a random variable?) If not, explain why.
- (f) Conditioned on $X_0 = 3$, what is the characteristic function of $W_1 + W_2$? (You do not need to do any algebra to simplify your answer.)

Solution:

- (a) There are three independent invariant distributions, one for each recurrent class. Since any convex combination of these is an invariant distribution, there are infinitely many invariant distributions.
- (b) The recursion equations are

$$p_1 = \frac{1}{2} + \frac{1}{2}p_2$$
$$p_2 = \frac{1}{3}p_2 + \frac{1}{3}p_1$$

from which we get $p_1 = 2/3$.

(c) X_n does not converge almost surely, but in distribution it converges to the random variable which is 4 with probability π_4 and 5 with probability π_5 . To compute these, we can argue

$$\pi_4 \frac{1}{2} = \pi_5 \frac{2}{3}$$

and with the additional equation $\pi_4 + \pi_5 = 1$, this gives $\pi_4 = 4/7, \pi_5 = 3/7$.

$$\mathbf{P}(X_n = 4 \mid X_{n+1} = 5, X_1 = 4) = \frac{P(X_n = 4, X_{n+1} = 5, |X_1 = 4)}{P(X_{n+1} = 5 \mid X_1 = 4)} = \frac{(1/2)\pi_4}{\pi_5} = \frac{2}{3}$$

- (e) Let R be the random variable which is 6 if $X_1 = 6$ and 7 if $X_1 = 7$. Then, the strong law of large numbers implies that R_n converges to R almost surely.
- (f) With probability 1/2, W_1+W_2 is N(12,8) and with probability 1/2 it is N(14,8). So,

$$\phi_{W_1+W_2}(t) = \frac{1}{2}e^{it_1 2}e^{-4t^2} + \frac{1}{2}e^{it_1 4}e^{-4t^2}.$$

Problem 2: (10 points)

A job takes an exponentially distributed amount of time to be processed, with parameter μ . While this job is being processed, new jobs arrive according to an independent Poisson process, with parameter λ . Find the PMF of the number of new jobs that arrive while the original job is being processed. (Justify your answer.)

Solution: Merge the arrival process and the original job process. The probability that k new jobs have arrived is the probability that the first k arrivals in the merged process come from the arrival process, and the k + 1'st comes from the job process. So,

$$\mathbf{P}(k \text{ new jobs }) = (\frac{\lambda}{\lambda+\mu})^k \frac{\mu}{\lambda+\mu}, \ k = 0, 1, 2, \dots$$

Problem 3: (10 points)

A workstation consists of three machines, M_1 , M_2 , and M_3 , each of which will fail after an amount of time T_i which is an independent exponentially distributed random variable, with parameter 1. Assume that the times to failure of the different machines are independent. The workstation fails as soon as **both** of the following have happened: (i) Machine M_1 has failed;

(ii) At least one of the machines M_2 and M_3 has failed.

- (a) Give a mathematical expression for the time of failure of the workstation in terms of the random variables T_i .
- (b) Find the expected value of the time to failure of the workstation.

Solution: For part a,

Failure time
$$= \max(T_1, \min(T_2, T_3)).$$

For part b, we have to wait an expected 1 time until M_1 fails. With probability 2/3, M_1 fails after M_2 or M_3 , so no more waiting is needed. With probability 1/3, however, M_1 fails first and we have to wait until an arrival in the merged M_2 , M_3 process which takes an expected value of 1/2. So,

E[Failture time] =
$$1 + \frac{1}{3}\frac{1}{2} = \frac{7}{6}$$
.

Problem 4: (10 points)

A fair six-sided die is tossed repeatedly and independently. Let $N_i(t)$ be the number of times a result of *i* appears in the first *t* tosses. We know that the joint PMF of the vector $N(t) = (N_1(t), \ldots, N_6(t))$ is multinomial.

- (a) For t > s, find $\mathbf{E}[N_2(t) \mid N_1(s) = k]$.
- (b) Find a and b such that $(N_1(t) at)/b\sqrt{t}$ converges in distribution to a standard normal.

Solution: For part a, observe that the expected number of 2's in tosses $s + 1, \ldots, t$ is (t - s)/6, and by conditioning, we can argue that the expected number of 2s in tosses $1, \ldots, s$ is (s - k)/5. So the final answer is (t - s)/6 + (s - k)/5.

For part b, we need to apply the central limit theorem. a needs to be the mean of $N_1(1)$, so a = 1/6. b needs to be the square root of the variance, $b = \sqrt{1/6 - (1/6)^2} = \frac{\sqrt{5}}{6}$.

Problem 5: (10 points)

Let X be a vector random variable with mean zero and covariance matrix V.

- (a) Specify (in terms of V, and whenever possible) a square matrix U such that the covariance matrix of UX is the identity. State the conditions needed for this to be possible.
- (b) Is it true that we can always find a matrix U (not necessarily square) so that the covariance of UX is the identity? Explain briefly.

Solution: We have that the covariance of UX is

$$\operatorname{Cov}(UX) = UXX^TU = UVU,$$

so that if V is positive definite, we can just pick $U = V^{-1/2}$. Now for V to be positive definite, we must have that

 $a^T V a \neq 0$,

for all $a \neq 0$ (since V is automatically nonnegative definite), which is

$$E[(a^T X)^2] \neq 0,$$

which is the same as as requiring that $a^T X$ is not zero with probability 1. In summary, the condition for the existence of such a matrix is that the identically-zero random variable is not a linear combination of the random variables in X.

For part b, observe that its not possible to find such a matrix U if X = 0. On the other hand, if the vector X contains a random variable which is not identically 0, it is possible: we can just set $U = e_i^T$, where e_i is the *i*'th basis vector, and X_i is the random variable thats not identically 0.

Problem 6: (10 points)

Give an example of a sequence $\{X_n\}$ of r.v.s for which $\mathbf{E}[X_n^2] \to 0$, but X_n does not converge almost surely to 0.

Solution: Take X_n to be 1 with probability 1/n and 0 otherwise. Then, $E[X_n^2] = 1/n$ which goes to 0, but $X_n = 1$ infinitely often with probability 1 from the Borel-Cantelli lemma, so X_n does not converge to 0 almost everywhere.

Problem 7: (10 points)

Consider a sequence of events $\{A_n\}$ that satisfy $\sum_{n=1}^{\infty} \mathbf{P}(A_n) = \infty$. However, the events are not independent, so that the Borel-Cantelli lemma does not apply. Instead, we have the following underlying structure. There is a sequence of independent random variables $\{X_n\}$ and a sequence of measurable functions $g_n : \mathbb{R}^2 \to \{0, 1\}$ such that $A_n = \{g_n(X_n, X_{n+1}) = 1\}$. Show that $\mathbf{P}(A_n \text{ i.o.}) = 1$.

Solution: At least one of

$$\sum_{n \text{ even}} \mathbf{P}(A_n), \quad \sum_{n \text{ odd}} \mathbf{P}(A_n),$$

must be infinite. Say it is the sum over even n that is infinite. Then, the events

$$A_2, A_4, A_6, \ldots$$

are all independent and by the Borel-Cantelli lemma, infinitely many of them must occur with probability one.

Problem 8: (10 points)

Let $\{X_n \mid n \ge 1\}$ be a Markov chain on the state space $\{1, \ldots, m\}$, for some integer m. Assume that this chain has a single recurrent class and no transient states.

(a) Let

$$M_n = \max_{i \le n} X_i.$$

Is $\{M_n\}$ a Markov chain. If yes, give its one-step transition probabilities, and identify the transient and recurrent states. If not, explain why (briefly).

(b) Let $Y_n = (M_n, X_n)$. Is the process the process $\{Y_n\}$ a Markov chain? If yes, do not give a justification but give its one-step transition probabilities, and identify the transient and recurrent states. If not, explain why.

Solution:

- (a) Not a Markov chain. Consider for example a particle at three states, 0, 1, 2, which are connected as 1-0-2 (i.e. there is a connection between 1 and 0 and between 0 and 2). The particle jumps to a random neighbor with equal probability. The probability of transitions to $M_1 = 2$ from the history $M_0 = 1$ is 0, but the probability of transitions to $M_2 = 2$ from the history $M_0 = 1$, $M_1 = 1$ is strictly positive.
- (b) Yes, this is a markov chain. The probability of transitioning from (M_1, i) to (M_2, j) is p_{ij} if one of the following two conditions holds:
 - $\max(i, j) \le M_1 \text{ and } M_2 = M_1.$
 - $j > M_1, j = M_2.$

and 0 otherwise. The recurrent state are the states (m, i), i = 1, ..., m; all other states are transient.

6.436J / 15.085J Fundamentals of Probability Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.