# MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

## Whenever asked to explain or justify an answer, a formal proof is not needed, but just a brief explanation.

Problem 1: (30 points)
Consider the Markov chain shown in the figure. Each time that state $i$ is visited, an independent random reward is obtained which is a normal random variable with mean $i$ and variance 4 . More precisely, the reward $W_{n}$ obtained at time $n$, has a conditional PDF (given the past history), which is $N(i, 4)$.
(a) How many invariant distributions are there?
(b) Starting from state 1 , what is the probability that the chain eventually visits state 5 ?
(c) Suppose that $X_{0}=4$. Does $X_{n}$ converge almost surely? In distribution?
(d) Find $\mathbf{P}\left(X_{n}=4 \mid X_{n+1}=5, X_{1}=4\right)$, in the limit of very large $n$.
(e) Consider the average reward $R_{n}=\left(W_{1}+\cdots+W_{n}\right) / n$. Conditioned on $X_{0}=$ 3 , does $R_{n}$ converge almost surely? If yes, to what? (A number or a random variable?) If not, explain why.
(f) Conditioned on $X_{0}=3$, what is the characteristic function of $W_{1}+W_{2}$ ? (You do not need to do any algebra to simplify your answer.)


## Solution:

(a) There are three independent invariant distributions, one for each recurrent class. Since any convex combination of these is an invariant distribution, there are infinitely many invariant distributions.
(b) The recursion equations are

$$
\begin{aligned}
& p_{1}=\frac{1}{2}+\frac{1}{2} p_{2} \\
& p_{2}=\frac{1}{3} p_{2}+\frac{1}{3} p_{1}
\end{aligned}
$$

from which we get $p_{1}=2 / 3$.
(c) $X_{n}$ does not converge almost surely, but in distribution it converges to the random variable which is 4 with probability $\pi_{4}$ and 5 with probability $\pi_{5}$. To compute these, we can argue

$$
\pi_{4} \frac{1}{2}=\pi_{5} \frac{2}{3}
$$

and with the additional equation $\pi_{4}+\pi_{5}=1$, this gives $\pi_{4}=4 / 7, \pi_{5}=3 / 7$.
(d)

$$
\mathbf{P}\left(X_{n}=4 \mid X_{n+1}=5, X_{1}=4\right)=\frac{P\left(X_{n}=4, X_{n+1}=5, \mid X_{1}=4\right)}{P\left(X_{n+1}=5 \mid X_{1}=4\right)}=\frac{(1 / 2) \pi_{4}}{\pi_{5}}=\frac{2}{3}
$$

(e) Let $R$ be the random variable which is 6 if $X_{1}=6$ and 7 if $X_{1}=7$. Then, the strong law of large numbers implies that $R_{n}$ converges to $R$ almost surely.
(f) With probability $1 / 2, W_{1}+W_{2}$ is $N(12,8)$ and with probability $1 / 2$ it is $N(14,8)$. So,

$$
\phi_{W_{1}+W_{2}}(t)=\frac{1}{2} e^{i t 12} e^{-4 t^{2}}+\frac{1}{2} e^{i t 14} e^{-4 t^{2}} .
$$

Problem 2: (10 points)
A job takes an exponentially distributed amount of time to be processed, with parameter $\mu$. While this job is being processed, new jobs arrive according to an independent Poisson process, with parameter $\lambda$. Find the PMF of the number of new jobs that arrive while the original job is being processed. (Justify your answer.)

Solution: Merge the arrival process and the original job process. The probability that $k$ new jobs have arrived is the probability that the first $k$ arrivals in the merged process come from the arrival process, and the $k+1$ 'st comes from the job process. So,

$$
\mathbf{P}(k \text { new jobs })=\left(\frac{\lambda}{\lambda+\mu}\right)^{k} \frac{\mu}{\lambda+\mu}, k=0,1,2, \ldots
$$

Problem 3: (10 points)
A workstation consists of three machines, $M_{1}, M_{2}$, and $M_{3}$, each of which will fail after an amount of time $T_{i}$ which is an independent exponentially distributed random variable, with parameter 1. Assume that the times to failure of the different machines are independent. The workstation fails as soon as both of the following have happened:
(i) Machine $M_{1}$ has failed;
(ii) At least one of the machines $M_{2}$ and $M_{3}$ has failed.
(a) Give a mathematical expression for the time of failure of the workstation in terms of the random variables $T_{i}$.
(b) Find the expected value of the time to failure of the workstation.

Solution: For part a,

$$
\text { Failure time }=\max \left(T_{1}, \min \left(T_{2}, T_{3}\right)\right)
$$

For part b, we have to wait an expected 1 time until $M_{1}$ fails. With probability $2 / 3, M_{1}$ fails after $M_{2}$ or $M_{3}$, so no more waiting is needed. With probability $1 / 3$, however, $M_{1}$ fails first and we have to wait until an arrival in the merged $M_{2}, M_{3}$ process which takes an expected value of $1 / 2$. So,

$$
\mathbf{E}[\text { Failture time }]=1+\frac{1}{3} \frac{1}{2}=\frac{7}{6}
$$

Problem 4: (10 points)
A fair six-sided die is tossed repeatedly and independently. Let $N_{i}(t)$ be the number of times a result of $i$ appears in the first $t$ tosses. We know that the joint PMF of the vector $N(t)=\left(N_{1}(t), \ldots, N_{6}(t)\right)$ is multinomial.
(a) For $t>s$, find $\mathbf{E}\left[N_{2}(t) \mid N_{1}(s)=k\right]$.
(b) Find $a$ and $b$ such that $\left(N_{1}(t)-a t\right) / b \sqrt{t}$ converges in distribution to a standard normal.

Solution: For part a, observe that the expected number of 2's in tosses $s+1, \ldots, t$ is $(t-s) / 6$, and by conditioning, we can argue that the expected number of 2 s in tosses $1, \ldots, s$ is $(s-k) / 5$. So the final answer is $(t-s) / 6+(s-k) / 5$.

For part b , we need to apply the central limit theorem. $a$ needs to be the mean of $N_{1}(1)$, so $a=1 / 6$. $b$ needs to be the square root of the variance, $b=\sqrt{1 / 6-(1 / 6)^{2}}=$ $\frac{\sqrt{5}}{6}$.

## Problem 5: (10 points)

Let $X$ be a vector random variable with mean zero and covariance matrix $V$.
(a) Specify (in terms of $V$, and whenever possible) a square matrix $U$ such that the covariance matrix of $U X$ is the identity. State the conditions needed for this to be possible.
(b) Is it true that we can always find a matrix $U$ (not necessarily square) so that the covariance of $U X$ is the identity? Explain briefly.

Solution: We have that the covariance of $U X$ is

$$
\operatorname{Cov}(U X)=U X X^{T} U=U V U
$$

so that if $V$ is positive definite, we can just pick $U=V^{-1 / 2}$. Now for $V$ to be positive definite, we must have that

$$
a^{T} V a \neq 0
$$

for all $a \neq 0$ (since $V$ is automatically nonnegative definite), which is

$$
E\left[\left(a^{T} X\right)^{2}\right] \neq 0
$$

which is the the same as as requiring that $a^{T} X$ is not zero with probability 1 . In summary, the condition for the existence of such a matrix is that the identically-zero random variable is not a linear combination of the random variables in $X$.

For part $b$, observe that its not possible to find such a matrix $U$ if $X=0$. On the other hand, if the vector $X$ contains a random variable which is not identically 0 , it is possible: we can just set $U=e_{i}^{T}$, where $e_{i}$ is the $i^{\prime}$ th basis vector, and $X_{i}$ is the random variable thats not identically 0 .

Problem 6: (10 points)
Give an example of a sequence $\left\{X_{n}\right\}$ of r.v.s for which $\mathbf{E}\left[X_{n}^{2}\right] \rightarrow 0$, but $X_{n}$ does not converge almost surely to 0 .

Solution: Take $X_{n}$ to be 1 with probability $1 / n$ and 0 otherwise. Then, $E\left[X_{n}^{2}\right]=1 / n$ which goes to 0 , but $X_{n}=1$ infinitely often with probability 1 from the Borel-Cantelli lemma, so $X_{n}$ does not converge to 0 almost everywhere.

Problem 7: (10 points)
Consider a sequence of events $\left\{A_{n}\right\}$ that satisfy $\sum_{n=1}^{\infty} \mathbf{P}\left(A_{n}\right)=\infty$. However, the events are not independent, so that the Borel-Cantelli lemma does not apply. Instead, we have the following underlying structure. There is a sequence of independent random variables $\left\{X_{n}\right\}$ and a sequence of measurable functions $g_{n}: \mathbb{R}^{2} \rightarrow\{0,1\}$ such that $A_{n}=\left\{g_{n}\left(X_{n}, X_{n+1}\right)=1\right\}$. Show that $\mathbf{P}\left(A_{n}\right.$ i.o. $)=1$.
Solution: At least one of

$$
\sum_{n \text { even }} \mathbf{P}\left(A_{n}\right), \quad \sum_{n \text { odd }} \mathbf{P}\left(A_{n}\right),
$$

must be infinite. Say it is the sum over even $n$ that is infinite. Then, the events

$$
A_{2}, A_{4}, A_{6}, \ldots
$$

are all independent and by the Borel-Cantelli lemma, infinitely many of them must occur with probability one.

Problem 8: (10 points)
Let $\left\{X_{n} \mid n \geq 1\right\}$ be a Markov chain on the state space $\{1, \ldots, m\}$, for some integer $m$. Assume that this chain has a single recurrent class and no transient states.
(a) Let

$$
M_{n}=\max _{i \leq n} X_{i}
$$

Is $\left\{M_{n}\right\}$ a Markov chain. If yes, give its one-step transition probabilities, and identify the transient and recurrent states. If not, explain why (briefly).
(b) Let $Y_{n}=\left(M_{n}, X_{n}\right)$. Is the process the process $\left\{Y_{n}\right\}$ a Markov chain? If yes, do not give a justification but give its one-step transition probabilities, and identify the transient and recurrent states. If not, explain why.

## Solution:

(a) Not a Markov chain. Consider for example a particle at three states, $0,1,2$, which are connected as $1-0-2$ (i.e. there is a connection between 1 and 0 and between 0 and 2). The particle jumps to a random neighbor with equal probability. The probability of transitions to $M_{1}=2$ from the history $M_{0}=1$ is 0 , but the probability of transitions to $M_{2}=2$ from the history $M_{0}=1, M_{1}=1$ is strictly positive.
(b) Yes, this is a markov chain. The probability of transitioning from $\left(M_{1}, i\right)$ to $\left(M_{2}, j\right)$ is $p_{i j}$ if one of the following two conditions holds:

- $\max (i, j) \leq M_{1}$ and $M_{2}=M_{1}$.
- $j>M_{1}, j=M_{2}$.
and 0 otherwise. The recurrent state are the states $(m, i), i=1, \ldots, m$; all other states are transient.

MIT OpenCourseWare
http://ocw.mit.edu

### 6.436J / 15.085J Fundamentals of Probability

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

