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Whenever asked to explain or justify an answer, a formal proof is not needed, but 
just a brief explanation. 

Problem 1: (30 points) 
Consider the Markov chain shown in the figure. Each time that state i is visited, an 
independent random reward is obtained which is a normal random variable with mean 
i and variance 4. More precisely, the reward Wn obtained at time n, has a conditional 
PDF (given the past history), which is N(i, 4). 

(a) How many invariant distributions are there? 

(b) Starting from state 1, what is the probability that the chain eventually visits 
state 5? 

(c) Suppose that X0 = 4. Does Xn converge almost surely? In distribution? 

(d) Find P(Xn = 4 | Xn+1 = 5, X1 = 4), in the limit of very large n. 

(e) Consider the average reward Rn = (W1 + + Wn)/n. Conditioned on X0 = · · · 
3, does Rn converge almost surely? If yes, to what? (A number or a random 
variable?) If not, explain why. 

(f) Conditioned on X0 = 3, what is the characteristic function of W1 + W2? (You 
do not need to do any algebra to simplify your answer.) 
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Solution: 

(a) There are three independent invariant distributions, one for each recurrent class. 
Since any convex combination of these is an invariant distribution, there are in
finitely many invariant distributions. 

(b) The recursion equations are 

1 1 
p1 = 

2 
+ 

2 
p2 

1 1 
p2 = 

3 
p2 + 

3 
p1 

from which we get p1 = 2/3. 

(c)	 Xn does not converge almost surely, but in distribution it converges to the random 
variable which is 4 with probability π4 and 5 with probability π5. To compute 
these, we can argue 

1 2 
π4 = π5 ,

2 3 

and with the additional equation π4 + π5 = 1, this gives π4 = 4/7, π5 = 3/7. 

(d) 

P(Xn = 4 Xn+1 = 5, X1 = 4) = 
P (Xn = 4, Xn+1 = 5, | X1 = 4) 

= 
(1/2)π4 =

2 
.| 

P (Xn+1 = 5 | X1 = 4) π5 3 

(e) Let R be the random variable which is 6 if X1 = 6 and 7 if X1 = 7. Then, the 
strong law of large numbers implies that Rn converges to R almost surely. 

(f) With probability 1/2, W1+W2 is N(12, 8) and with probability 1/2 it is N(14, 8). 
So, 

1 1 
φW1+W2 (t) = e it12 e−4t2 

+ e it14 e−4t2 

.
2 2 
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Problem 2: (10 points) 
A job takes an exponentially distributed amount of time to be processed, with parameter 
µ. While this job is being processed, new jobs arrive according to an independent 
Poisson process, with parameter λ. Find the PMF of the number of new jobs that arrive 
while the original job is being processed. (Justify your answer.) 

Solution: Merge the arrival process and the original job process. The probability that 
k new jobs have arrived is the probability that the first k arrivals in the merged process 
come from the arrival process, and the k + 1’st comes from the job process. So, 

P(k new jobs ) = ( 
λ 

)k µ 
, k = 0, 1, 2, . . . 

λ + µ λ + µ 
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Problem 3: (10 points) 
A workstation consists of three machines, M1, M2, and M3, each of which will fail 
after an amount of time Ti which is an independent exponentially distributed random 
variable, with parameter 1. Assume that the times to failure of the different machines 
are independent. The workstation fails as soon as both of the following have happened: 
(i) Machine M1 has failed; 
(ii) At least one of the machines M2 and M3 has failed. 

(a) Give a mathematical expression for the time of failure of the workstation in terms 
of the random variables Ti. 

(b) Find the expected value of the time to failure of the workstation. 

Solution: For part a, 

Failure time = max(T1, min(T2, T3)). 

For part b, we have to wait an expected 1 time until M1 fails. With probability 2/3, M1 

fails after M2 or M3, so no more waiting is needed. With probability 1/3, however, M1 

fails first and we have to wait until an arrival in the merged M2, M3 process which takes 
an expected value of 1/2. So, 

1 1 7
E[ Failture time ] = 1 + = .

3 2 6 
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Problem 4: (10 points)
 
A fair six-sided die is tossed repeatedly and independently. Let Ni(t) be the number of
 
times a result of i appears in the first t tosses. We know that the joint PMF of the vector
 
N(t) = (N1(t), . . . , N6(t)) is multinomial.
 

(a) For t > s, find E[N2(t) | N1(s) = k]. 

(b) Find a and b such that (N1(t) − at)/b
√

t converges in distribution to a standard 
normal. 

Solution: For part a, observe that the expected number of 2’s in tosses s + 1, . . . , t is 
(t − s)/6, and by conditioning, we can argue that the expected number of 2s in tosses 
1, . . . , s is (s − k)/5. So the final answer is (t − s)/6 + (s − k)/5. 

For part b, we need to apply the central limit theorem. a needs to be the mean of 
N1(1), so a = 1/6. b needs to be the square root of the variance, b = 1/6 − (1/6)2 = √

5 .6 
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Problem 5: (10 points)
 
Let X be a vector random variable with mean zero and covariance matrix V .
 

(a) Specify (in terms of V , and whenever possible) a square matrix U such that the 
covariance matrix of UX is the identity. State the conditions needed for this to 
be possible. 

(b) Is it true that we can always find a matrix U (not necessarily square) so that the 
covariance of UX is the identity? Explain briefly. 

Solution: We have that the covariance of UX is 

Cov(UX) = UXXT U = UV U, 

so that if V is positive definite, we can just pick U = V −1/2. Now for V to be positive 
definite, we must have that 

a T V a = 0� , 

for all a = 0� (since V is automatically nonnegative definite), which is 

E[(a T X)2] = 0, 

which is the the same as as requiring that aT X is not zero with probability 1. In sum
mary, the condition for the existence of such a matrix is that the identically-zero random 
variable is not a linear combination of the random variables in X . 

For part b, observe that its not possible to find such a matrix U if X = 0. On the 
other hand, if the vector X contains a random variable which is not identically 0, it is 
possible: we can just set U = ei

T , where ei is the i’th basis vector, and Xi is the random 
variable thats not identically 0. 
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Problem 6: (10 points)
 
Give an example of a sequence {Xn} of r.v.s for which E[X2] 
0, but Xn does not
 
converge almost surely to 0. 

n →


Solution: Take Xn to be 1 with probability 1/n and 0 otherwise. Then, E[Xn 
2] = 1/n
 

which goes to 0, but Xn = 1 infinitely often with probability 1 from the Borel-Cantelli
 
lemma, so Xn does not converge to 0 almost everywhere.
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Problem 7: (10 points) � 
Consider a sequence of events {An} that satisfy ∞ P(An) = ∞. However, the n=1 
events are not independent, so that the Borel-Cantelli lemma does not apply. Instead, 
we have the following underlying structure. There is a sequence of independent random 
variables {Xn} and a sequence of measurable functions gn : R2 → {0, 1} such that 
An = {gn(Xn, Xn+1) = 1}. Show that P(An i.o.) = 1. 

Solution: At least one of � � 
P(An), P(An), 

n even n odd 

must be infinite. Say it is the sum over even n that is infinite. Then, the events 

A2, A4, A6, . . . 

are all independent and by the Borel-Cantelli lemma, infinitely many of them must occur 
with probability one. 
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Problem 8: (10 points)
 
Let {Xn | n ≥ 1} be a Markov chain on the state space {1, . . . ,m}, for some integer
 
m. Assume that this chain has a single recurrent class and no transient states. 

(a) Let 
Mn = max Xi. 

i≤n 

Is {Mn} a Markov chain. If yes, give its one-step transition probabilities, and 
identify the transient and recurrent states. If not, explain why (briefly). 

(b) Let Yn = (Mn, Xn). Is the process the process {Yn} a Markov chain? If yes, do 
not give a justification but give its one-step transition probabilities, and identify 
the transient and recurrent states. If not, explain why. 

Solution: 

(a) Not a Markov chain. Consider for example a particle at three states, 0, 1, 2, which 
are connected as 1−0−2 (i.e. there is a connection between 1 and 0 and between 
0 and 2) . The particle jumps to a random neighbor with equal probability. The 
probability of transitions to M1 = 2 from the history M0 = 1 is 0, but the 
probability of transitions to M2 = 2 from the history M0 = 1, M1 = 1 is strictly 
positive. 

(b) Yes, this is a markov chain.	 The probability of transitioning from (M1, i) to 
(M2, j) is pij if one of the following two conditions holds: 

• max(i, j) ≤ M1 and M2 = M1. 

• j > M1, j = M2. 

and 0 otherwise. The recurrent state are the states (m, i), i = 1, . . . ,m; all other 
states are transient. 
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