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6.436/15.085 
Midterm Exam 

Date: October 23, 2006 

Problem 1 Which of the following functions is a distribution function? For those which are 
compute the density function. For those which are not explain what fails. 

A. 

1 − e−x2 
, x ≥ 0; 

0, otherwise. 
F (x) =


B.


C.


1 
e− 

x , x > 0;
F (x) =


0, otherwise.


⎧⎨ ⎩


0, x ≤ 0; 
1 10 < x ≤F (x) =
 3 , 
1 x >


2 
1 
2 . 

Solution: 

A. F is a non-decreasing continuous function satisfying limx→−∞ F (x) = 0, limx→∞ F (x) = 
1. Thus it is a distribution function. Its density is f(x) = 0, x < 0 and f(x) = 
2x exp(−x2), x ≥ 0. 

B. Same answer. Note that F is continuous at zero as well (although only right-continuity 
is needed) as limx 0 exp(−1/x) = 0. Its density is f(x) = 0, x < 0 and f(x) = 
exp(−1/x)/x2, x ≥ 

↓
0. 

C. F is not right-continuous, so it is not a distribution function. 

Problem 2 Buses arrive at twenty minutes intervals starting at noon. A man arrives at a 
random time X after noon, where X is distributed as 

F (x) =


⎧⎨ ⎩


0, x < 0;

x 0 ≤ x < 6060 , 
1 x ≥ 60. 

Finding the expected time that the man has to wait for the bus.
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Solution: Observe that F is the uniform distribution on [0, 60]. We use the following 

fact: let U = 
d [A,B] and let A ≤ a < b ≤ B. Then conditioned on U ∈ [a, b], U = 

d 
U(a, b). 

One line proof P(U ∈ [a, x]|U ∈ [a, b]) = (x−a)/(B−A) = (x − a)/(b − a).(b−a)/(B−A) 

For each t = 1, 2, 3, conditioned on the event X ∈ [20(t − 1), 20t], the waiting time is 
20t − X, which by our observation is uniformly distributed over [0, 20]. Thus the expected 
waiting time is the half-length, that is 20/2 = 10. Since the events X ∈ [20(t − 1), 20t] are 
equally likely for t = 1, 2, 3, the expected waiting time is 10 minutes. 

Problem 3 Let X, Y be independent geometrically distributed r.v. with parameter p. Let 
Z = E[X|X + Y ]. Find the expected value and the variance of Z. 

Solution: We use the following trick: observe that E[X|X + Y ] + E[Y |X + Y ] = E[X + 
Y |X+Y ] = X+Y . By symmetry E[X|X+Y ] = E[Y |X+Y ] implying that Z = E[X|X+Y ] = 
(X + Y )/2. Thus the expected value of Z is E[Z] = (1/2)(E[X] + E[Y ]) = 1/p. Since X and 
Y are independent, then Var(Z) = (1/4)(Var(X) + Var(Y )) = (1 − p)/(2p2), as the variance 
of a geometric r.v. is (1 − p)/p2 . 

Problem 4 A sequence of events A1, . . . , An, n ≥ 3 is given. It is known that at least one of 
these events happens, but also at most two of these events can happen at the same time. Also 
it is known that P(Ar) = p for all r = 1, . . . , n and P(Ar ∩ As) = q for all 1 ≤ r < s ≤ n. 
Show that 

A. p ≥ n 
1 . 

B. q ≤ n(n
2 
−1) . 

Solution: 

A. We are given that ∪1≤i≤nAn = Ω. Therefore 1 = P(∪1≤i≤nAn) ≤ i P(Ai) = np, 
implying p ≥ 1/n. 

B. Consider the events Bi,j � Ai ∩ Aj , i �= j. Observe that these events are disjoint as 
Bi,j ∩ Bi,k = Ai ∩ Aj ∩ Ak = ∅ and Bi,j ∩ Bk,l = Ai ∩ Aj ∩ Ak ∩ Al = ∅. Therefore 

1 = P(Ω) ≥ 
� 

P(Bi,j ) = 
n(n 

2
− 1) 

q 
i<j 

and the required bound for q is obtained.
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Problem 5 Suppose X and Y have joint density function f(x, y) = 2e−x−y, 0 < x < y < ∞. 
Are X and Y independent? Find the covariance of X and Y . 

Solution: Let us compute the marginal densities of X and Y :


∞
fX (x) = 2 exp(−x − y)dy = 2 exp(−x)(− exp(−y)) = 2 exp(−2x).


y≥x x 

y 
fY (y) = 2 exp(−x − y)dy = 2 exp(−y)(− exp(−x)) = 2 exp(−y)(1 − exp(−y)).


0x≤y 

We see that fX (x)fY (y) =� f(x, y). Thus X and Y are not independent. An even simpler 
way to see this is to observe that fX|Y (x|Y = y) = f(x, y)/fY (y) > 0 when y ≥ x and 
fX|Y (x|Y = y) = 0 when y < x. Thus it is not true that fX|Y (x|Y = y) = fX (x) and X and 
Y are not independent. We have 

E[X] = 2x exp(−2x)dx 
x≥0 

which we recognize as the expected value of Exp(2), thus equal to 1/2. Now 

E[Y ] = 2y exp(−y)dy − 2y exp(−2y)dy. 
y≥0 y≥0 

The first term is twice the expected value of Exp(1), the second is the expected value of 
Exp(2). Thus the difference is 2 − (1/2) = 3/2. 

Now let us compute the covariance. We have 

E[XY ] = 2xy exp(−x − y)dxdy

0≤x≤y 

= 2x exp(−x)dx y exp(−y)dy. 
x≥0 y≥x 

We have 

y exp(−y)dy = x exp(−x) − (− exp(−y))dy = (x + 1) exp(−x), 
y≥x y≥x 

giving 

E[XY ] = 2x(x + 1) exp(−2x)dx

x≥0 

= 2x 2 exp(−2x)dx + 2x exp(−2x)dx 
x≥0 x≥0 
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We recognize the second term as the expected value of Exp(2) distribution, namely 1/2. 
The first term is the second moment of the same distribution. We find it as 

2x 2 exp(−2x)dx = − 4x(−(1/2) exp(−2x))dx = 2x exp(−2x)dx = 1/2. 
x≥0 x≥0 x≥0 

Putting everything together we find


Cov(X, Y ) = E[XY ] − E[X]E[Y ] = 1 − (3/4) = 1/4.


Problem 6 Given events A1, . . . , An show that 

P(∪1≤r≤nAr) ≤ min P(Ar) − P(Ar ∩ Ak) . 
1≤k≤n 

1≤r≤n r:r=� k 

Solution: Fix an arbitrary k, 1 ≤ k ≤ n. Observe 

∪1≤r≤nAr = Ak ∩ ∪1≤r≤nAr ∪ Ak
c ∩ ∪1≤r≤nAr 

Observe also that these events are disjoint. Thus 

P(∪1≤r≤nAr) = P(Ak ∩ ∪1≤r≤nAr) + P(Ac
k ∩ ∪1≤r≤nAr) 

= P(Ak) + P(∪1≤r≤n(Ar ∩ Ac ))k

= P(Ak) + P(∪r=k(Ar ∩ Ac )) � 
� k

≤ P(Ak) + P(Ar ∩ Ac )k

r=k 

= P(Ak) + (P(Ar) − P(Ar ∩ Ak)) 
r=k 

= P(Ar) − P(Ar ∩ Ak)) 
r r=k 

Since we established the inequality for all k, the proof is complete. 
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