6.436/15.085
 Midterm Exam

Date: October 23, 2006

Problem 1 Which of the following functions is a distribution function? For those which are compute the density function. For those which are not explain what fails.
A.

$$
F(x)= \begin{cases}1-e^{-x^{2}}, & x \geq 0 \\ 0, & \text { otherwise } .\end{cases}
$$

B.

$$
F(x)= \begin{cases}e^{-\frac{1}{x}}, & x>0 \\ 0, & \text { otherwise }\end{cases}
$$

C.

$$
F(x)= \begin{cases}0, & x \leq 0 \\ \frac{1}{3}, & 0<x \leq \frac{1}{2} \\ 1 & x>\frac{1}{2} .\end{cases}
$$

Solution:

A. F is a non-decreasing continuous function satisfying $\lim _{x \rightarrow-\infty} F(x)=0, \lim _{x \rightarrow \infty} F(x)=$ 1. Thus it is a distribution function. Its density is $f(x)=0, x<0$ and $f(x)=$ $2 x \exp \left(-x^{2}\right), x \geq 0$.
B. Same answer. Note that F is continuous at zero as well (although only right-continuity is needed) as $\lim _{x \downarrow 0} \exp (-1 / x)=0$. Its density is $f(x)=0, x<0$ and $f(x)=$ $\exp (-1 / x) / x^{2}, x \geq 0$.
C. F is not right-continuous, so it is not a distribution function.

Problem 2 Buses arrive at twenty minutes intervals starting at noon. A man arrives at a random time X after noon, where X is distributed as

$$
F(x)= \begin{cases}0, & x<0 \\ \frac{x}{60}, & 0 \leq x<60 \\ 1 & x \geq 60\end{cases}
$$

Finding the expected time that the man has to wait for the bus.

Solution: Observe that F is the uniform distribution on $[0,60]$. We use the following fact: let $U \stackrel{d}{=}[A, B]$ and let $A \leq a<b \leq B$. Then conditioned on $U \in[a, b], U \stackrel{d}{=} U(a, b)$. One line proof $\mathbb{P}(U \in[a, x] \mid U \in[a, b])=\frac{(x-a) /(B-A)}{(b-a) /(B-A)}=(x-a) /(b-a)$.

For each $t=1,2,3$, conditioned on the event $X \in[20(t-1), 20 t]$, the waiting time is $20 t-X$, which by our observation is uniformly distributed over $[0,20]$. Thus the expected waiting time is the half-length, that is $20 / 2=10$. Since the events $X \in[20(t-1), 20 t]$ are equally likely for $t=1,2,3$, the expected waiting time is 10 minutes.

Problem 3 Let X, Y be independent geometrically distributed r.v. with parameter p. Let $Z=\mathbb{E}[X \mid X+Y]$. Find the expected value and the variance of Z.

Solution: We use the following trick: observe that $\mathbb{E}[X \mid X+Y]+\mathbb{E}[Y \mid X+Y]=\mathbb{E}[X+$ $Y \mid X+Y]=X+Y$. By symmetry $\mathbb{E}[X \mid X+Y]=\mathbb{E}[Y \mid X+Y]$ implying that $Z=\mathbb{E}[X \mid X+Y]=$ $(X+Y) / 2$. Thus the expected value of Z is $\mathbb{E}[Z]=(1 / 2)(\mathbb{E}[X]+\mathbb{E}[Y])=1 / p$. Since X and Y are independent, then $\operatorname{Var}(Z)=(1 / 4)(\operatorname{Var}(X)+\operatorname{Var}(Y))=(1-p) /\left(2 p^{2}\right)$, as the variance of a geometric r.v. is $(1-p) / p^{2}$.

Problem $4 A$ sequence of events $A_{1}, \ldots, A_{n}, n \geq 3$ is given. It is known that at least one of these events happens, but also at most two of these events can happen at the same time. Also it is known that $\mathbb{P}\left(A_{r}\right)=p$ for all $r=1, \ldots, n$ and $\mathbb{P}\left(A_{r} \cap A_{s}\right)=q$ for all $1 \leq r<s \leq n$. Show that
A. $p \geq \frac{1}{n}$.
B. $q \leq \frac{2}{n(n-1)}$.

Solution:

A. We are given that $\cup_{1 \leq i \leq n} A_{n}=\Omega$. Therefore $1=\mathbb{P}\left(\cup_{1 \leq i \leq n} A_{n}\right) \leq \sum_{i} \mathbb{P}\left(A_{i}\right)=n p$, implying $p \geq 1 / n$.
B. Consider the events $B_{i, j} \triangleq A_{i} \cap A_{j}, i \neq j$. Observe that these events are disjoint as $B_{i, j} \cap B_{i, k}=A_{i} \cap A_{j} \cap A_{k}=\emptyset$ and $B_{i, j} \cap B_{k, l}=A_{i} \cap A_{j} \cap A_{k} \cap A_{l}=\emptyset$. Therefore

$$
1=\mathbb{P}(\Omega) \geq \sum_{i<j} \mathbb{P}\left(B_{i, j}\right)=\frac{n(n-1)}{2} q
$$

and the required bound for q is obtained.

Problem 5 Suppose X and Y have joint density function $f(x, y)=2 e^{-x-y}, 0<x<y<\infty$. Are X and Y independent? Find the covariance of X and Y.

Solution: Let us compute the marginal densities of X and Y :

$$
\begin{aligned}
& f_{X}(x)=\int_{y \geq x} 2 \exp (-x-y) d y=\left.2 \exp (-x)(-\exp (-y))\right|_{x} ^{\infty}=2 \exp (-2 x) \\
& f_{Y}(y)=\int_{x \leq y} 2 \exp (-x-y) d y=\left.2 \exp (-y)(-\exp (-x))\right|_{0} ^{y}=2 \exp (-y)(1-\exp (-y))
\end{aligned}
$$

We see that $f_{X}(x) f_{Y}(y) \neq f(x, y)$. Thus X and Y are not independent. An even simpler way to see this is to observe that $f_{X \mid Y}(x \mid Y=y)=f(x, y) / f_{Y}(y)>0$ when $y \geq x$ and $f_{X \mid Y}(x \mid Y=y)=0$ when $y<x$. Thus it is not true that $f_{X \mid Y}(x \mid Y=y)=f_{X}(x)$ and X and Y are not independent. We have

$$
\mathbb{E}[X]=\int_{x \geq 0} 2 x \exp (-2 x) d x
$$

which we recognize as the expected value of $\operatorname{Exp}(2)$, thus equal to $1 / 2$. Now

$$
\mathbb{E}[Y]=\int_{y \geq 0} 2 y \exp (-y) d y-\int_{y \geq 0} 2 y \exp (-2 y) d y
$$

The first term is twice the expected value of $\operatorname{Exp}(1)$, the second is the expected value of $\operatorname{Exp}(2)$. Thus the difference is $2-(1 / 2)=3 / 2$.

Now let us compute the covariance. We have

$$
\begin{aligned}
\mathbb{E}[X Y] & =\int_{0 \leq x \leq y} 2 x y \exp (-x-y) d x d y \\
& =\int_{x \geq 0} 2 x \exp (-x) d x \int_{y \geq x} y \exp (-y) d y
\end{aligned}
$$

We have

$$
\int_{y \geq x} y \exp (-y) d y=x \exp (-x)-\int_{y \geq x}(-\exp (-y)) d y=(x+1) \exp (-x)
$$

giving

$$
\begin{aligned}
\mathbb{E}[X Y] & =\int_{x \geq 0} 2 x(x+1) \exp (-2 x) d x \\
& =\int_{x \geq 0} 2 x^{2} \exp (-2 x) d x+\int_{x \geq 0} 2 x \exp (-2 x) d x
\end{aligned}
$$

We recognize the second term as the expected value of $\operatorname{Exp}(2)$ distribution, namely $1 / 2$. The first term is the second moment of the same distribution. We find it as

$$
\int_{x \geq 0} 2 x^{2} \exp (-2 x) d x=-\int_{x \geq 0} 4 x(-(1 / 2) \exp (-2 x)) d x=\int_{x \geq 0} 2 x \exp (-2 x) d x=1 / 2 .
$$

Putting everything together we find

$$
\operatorname{Cov}(X, Y)=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]=1-(3 / 4)=1 / 4
$$

Problem 6 Given events A_{1}, \ldots, A_{n} show that

$$
\mathbb{P}\left(\cup_{1 \leq r \leq n} A_{r}\right) \leq \min _{1 \leq k \leq n}\left(\sum_{1 \leq r \leq n} \mathbb{P}\left(A_{r}\right)-\sum_{r: r \neq k} \mathbb{P}\left(A_{r} \cap A_{k}\right)\right) .
$$

Solution: Fix an arbitrary $k, 1 \leq k \leq n$. Observe

$$
\cup_{1 \leq r \leq n} A_{r}=\left(A_{k} \cap \cup_{1 \leq r \leq n} A_{r}\right) \cup\left(A_{k}^{c} \cap \cup_{1 \leq r \leq n} A_{r}\right)
$$

Observe also that these events are disjoint. Thus

$$
\begin{aligned}
\mathbb{P}\left(\cup_{1 \leq r \leq n} A_{r}\right) & =\mathbb{P}\left(A_{k} \cap \cup_{1 \leq r \leq n} A_{r}\right)+\mathbb{P}\left(A_{k}^{c} \cap \cup_{1 \leq r \leq n} A_{r}\right) \\
& =\mathbb{P}\left(A_{k}\right)+\mathbb{P}\left(\cup_{1 \leq r \leq n}\left(A_{r} \cap A_{k}^{c}\right)\right) \\
& =\mathbb{P}\left(A_{k}\right)+\mathbb{P}\left(\cup_{r \neq k}\left(A_{r} \cap A_{k}^{c}\right)\right) \\
& \leq \mathbb{P}\left(A_{k}\right)+\sum_{r \neq k} \mathbb{P}\left(A_{r} \cap A_{k}^{c}\right) \\
& =\mathbb{P}\left(A_{k}\right)+\sum_{r \neq k}\left(\mathbb{P}\left(A_{r}\right)-\mathbb{P}\left(A_{r} \cap A_{k}\right)\right) \\
& \left.=\sum_{r} \mathbb{P}\left(A_{r}\right)-\sum_{r \neq k} \mathbb{P}\left(A_{r} \cap A_{k}\right)\right)
\end{aligned}
$$

Since we established the inequality for all k, the proof is complete.

MIT OpenCourseWare
http://ocw.mit.edu

6.436J / 15.085J Fundamentals of Probability

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

