MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Fall 2007
$6.436 \mathrm{~J} / 15.085 \mathrm{~J}$
Midterm exam, $7-9 \mathrm{pm}$, (120 mins/70 pts)

Possibly useful facts:

(a) If X is uniform on $[a, b]$, then the variance of X is $(b-a)^{2} / 12$.
(b) $\sum_{n=1}^{\infty} 1 / n^{\alpha}$ is infinite when $\alpha \leq 1$, and finite when $\alpha>1$.

Problem 1: (10 points)
Let \mathcal{F} be a σ-field of subsets of a sample space Ω. Let H be a subset of Ω that does not belong to \mathcal{F}. Consider the collection \mathcal{G} of all sets of the form

$$
(H \cap A) \cup\left(H^{c} \cap B\right),
$$

where $A \in \mathcal{F}$ and $B \in \mathcal{F}$.
(a) Show that if $A \in \mathcal{F}$, then $(H \cap A) \in \mathcal{G}$.
(b) Show that \mathcal{G} is a σ-field.

Solution:

For part (a), we can simply take $B=\emptyset$, which must be a member of \mathcal{F}.
For part (b), let us check the σ-field requirements. We can take $A=B=\emptyset$ to get that $\emptyset \in \mathcal{G}$. To show complements are in \mathcal{G}, let $K \in \mathcal{G}$. Then, $K=$ $(H \cap A) \cup\left(H^{c} \cap B\right)$ for some $A, B \in \mathcal{F}$. Define $K^{*}=\left(H \cap A^{c}\right) \cup\left(H^{c} \cap B^{c}\right)$. Clearly, $K^{*} \in \mathcal{G}$.

Now observe that $K \cup K^{*}=\Omega$. Indeed, one is either in H or in H^{c}; if one is in H, we can further say one is either in A or A^{c}; if one is in H^{c}, we can further say one is either in B or B^{c}. Either way, one belongs to one of the four clauses in $K \cup K^{*}$.

Next, observe that $K \cap K^{*}=\emptyset$. Indeed, if one is in H then one cannot be in both K and K^{*} since this means belong to both A and A^{c}. Similarly, if one is in H^{c}, one cannot belong to both K and K^{*} since this means belonging to both B and B^{c}.

We conclude that K^{*} is the complement of K, and therefore \mathcal{G} is closed under complementation.

Now it remains to show that countable unions are in \mathcal{G}. Let $D_{i} \in \mathcal{G}$; then $D_{i}=\left(H \cap A_{i}\right) \cup\left(H^{c} \cap B_{i}\right)$ for some $A_{i}, B_{i} \in \mathcal{F}$. Then,

$$
\begin{aligned}
\cup_{i=1}^{\infty} D_{i} & =\cup_{i=1}^{\infty}\left(H \cap A_{i}\right) \cup \cup_{i=1}^{\infty}\left(H^{c} \cap B_{i}\right) \\
& =\left(H \cap \cup_{i=1}^{\infty} A_{i}\right) \cup\left(H^{c} \cap \cup_{i=1}^{\infty} B_{i}\right)
\end{aligned}
$$

which must belong to \mathcal{G} since $\cup_{i=1}^{\infty} A_{i}$ and $\cup_{i=1}^{\infty} B_{i}$ are both in \mathcal{F}.
Problem 2: (10 points)
Let X_{n} be i.i.d. random variables, defined on the same probability space that
are exponentially distributed, with $\operatorname{PDF} f(x)=e^{-x}, x \geq 0$. Let c be a positive constant, and consider the event A that

$$
\text { " } X_{n} \geq c \log n \text { for infinitely many values of } n "
$$

Find a necessary and sufficient condition for $\mathbf{P}(A)$ to be equal to 1 .

Solution:

First, note that if X_{n} has PDF e^{-x}, its CDF is $1-e^{-x}$ and $P\left(X_{n} \geq x\right)=e^{-x}$. Defining

$$
A_{n}=X_{n} \geq c \log n
$$

a necessary and sufficient condition for the statement " A_{n} occurs infinitely often" is, by independence of A_{n} and the Borel-Cantelli lemmas,

$$
\sum_{n=1}^{\infty} P\left(A_{n}\right)=\infty
$$

However,

$$
P\left(A_{n}\right)=e^{-c \log n}=\frac{1}{n^{c}}
$$

so that applying "possibly useful fact (b)" gives us the necessary and sufficient condition $c \leq 1$.

Problem 3: (10 points)
Let X_{1}, X_{2}, X_{3} be independent random variables, uniformly distributed on $[0,1]$. Let Y be the median of X_{1}, X_{2}, X_{3} (that is the middle of the three values). Find the conditional CDF of X_{1}, given the event $Y=1 / 2$. Under this conditional distribution, is X_{1} continuous? Discrete?

Solution:

There are three possibilities; X_{1} is either the smallest, the median, or the largest. Each of these possibilities occurs with probability $1 / 3$.

If X_{1} is the smallest, then given that the median is $1 / 2$, its distribution is uniform in $[0,1 / 2]$. If X_{1} is the median, it is equal to $1 / 2$ with probability 1. If X_{1} is the largest, then conditioned on the median being $1 / 2$ it is uniform in $[1 / 2,1]$.

Therefore, $P\left(X_{1} \leq x\right)=2 x / 3$, if $x<1 / 2 ; 2 / 3$ if $x=1 / 2$; and $2 / 3+(1 / 3)(x-$ $1 / 2) /(1 / 2)$ if $x>1 / 2$.

For part (b), conditioned on $Y=1 / 2$ we have that X_{1} is neither continuous nor discrete. It has a jump on $x=1 / 2$, so that it cannot have a density, and thus it is not continuous; and there are infinitely many values it can take, so that it is not discrete.

Problem 4: (10 points)
Let X and Y be independent random variables, uniformly distributed on $[0,2]$.
(a) Find the mean and variance of $X Y$.
(b) Calculate the probability $\mathbf{P}(X Y \leq 1)$.

Solution:

Note that the expectation of X and Y is both 1 , and, applying "possibly useful fact (a)", the variance of both X and Y is $1 / 3$, which implies $E\left[X^{2}\right]=$ $E\left[Y^{2}\right]=4 / 3$.

By independence,

$$
E[X Y]=E[X] E[Y]=1 \cdot 1=1
$$

To compute the variance, we argue again by independence

$$
E\left[(X Y)^{2}\right]=E\left[X^{2}\right] E\left[Y^{2}\right]=\frac{16}{9}
$$

and therefore

$$
\operatorname{var}(X Y)=\frac{16}{9}-1=\frac{7}{9}
$$

Finally,

$$
P(X Y \leq 1)=P\left(Y \leq \frac{1}{X}\right)=\int_{0}^{2} F_{Y}\left(\frac{1}{x}\right) f_{X}(x) d x
$$

Now observe that when $X \leq 1 / 2$, then $Y \leq 1 / X$ with probability 1 ; and when $X \in(1 / 2,2)$, then $Y \leq 1 / X$ with probability $(1 / X) / 2$. Thus,

$$
\begin{aligned}
P(X Y \leq 1) & =\int_{0}^{1 / 2} 1 \cdot \frac{1}{2} d x+\int_{1 / 2}^{2} \frac{1}{2 x} \frac{1}{2} d x \\
& =\frac{1}{4}+\frac{1}{4}\left(\log 2-\log \frac{1}{2}\right) \\
& =\frac{1}{4}+\frac{\log 2}{2}
\end{aligned}
$$

Problem 5: (10 points)
A standard card deck (52 cards) is distributed to two persons: 26 cards to each person. All partitions are equally likely. Find the probability that the first person receives all four aces.

Solution:

The total number of choices is $\binom{52}{26}$. The number of possibilities where the first person receives all four aces is equal to the number of ways to distribute the
remaining 48 cards, with 22 going to player 1 and 26 going to player 2, which is $\binom{48}{22}$. Thus, the answer is

$$
\frac{\binom{48}{22}}{\binom{52}{26}}
$$

Problem 6: (10 points)
n male and n female dinner guests sit randomly on a long linear table with $2 n$ seats. For any k in the range $1 \ldots, 2 n-1$, we say that the pair of seats k and $k+1$ is "interesting" if the two seats are occupied by guests of different genders. Let A_{k} be the event that the pair $(k, k+1)$ is interesting.
(a) Find the probability that the pair $(k, k+1)$ is interesting.
(b) Find the expected value of the number of interesting pairs.
(c) Are the events A_{k} and A_{k+2} independent?

Solution:

For part a, observe that there are $\binom{2 n}{n}$ choices. How many of those choices have different genders on the k and $k+1$'s places? Given a male in the k 'th spot and a female in the $k+1$ 'st, the number of ways to fill in the rest $\binom{2 n-2}{n-1}$. Given a female in the k 'th spot and a male in the $k+1$ 'st, the number of ways to fill in the rest is, again, $\binom{2 n-2}{n-1}$. Therefore, the probability that the pair $(k, k+1)$ is interesting is

$$
\frac{2\binom{2 n-2}{n-1}}{\binom{2 n}{n}}=\frac{n}{2 n-1} .
$$

For part b, let I_{k} be the indicator function of A_{k}. Then, the number of interesting pairs is $\sum_{k=1}^{2 n-1} I_{k}$, and its expected value is

$$
\sum_{k=1}^{2 n-1} E\left[I_{k}\right]=(2 n-1) \frac{n}{2 n-1}=n .
$$

For part c, consider the probability that both A_{k} and A_{k+2} to occur. There are four ways to put interesting pairs in both slots $(k, k+1)$ and $(k+2, k+3)$. The number of ways to fill in the remaining slots is $\binom{2 n-4}{n-2}$, so that

$$
P\left(A_{k} \bigcap A_{k+2}\right)=\frac{4\binom{2 n-4}{n-2}}{\binom{2 n}{n}},
$$

which is not equal to $\left(\frac{n}{2 n-1}\right)^{2}$, so the events are not independent.
Problem 7: (10 points)
Let X and Y be positive continuous random variables with joint PDF $f_{X, Y}(x, y)=$ e^{-x-y}, for $x>0$ and $y>0$.
(a) Let $V=X+Y$ and $U=X Y$. Use the Jacobian formula to find the joint PDF of V and U.
(b) Are U and V independent?

Solution:

Solving for X, Y in terms of U, V we get the equation $U=X(V-X)$ which is a quadratic which leads to solutions

$$
\begin{aligned}
\max (X, Y) & =\frac{V+\sqrt{V^{2}-4 U}}{2} \\
\min (X, Y) & =\frac{V-\sqrt{V^{2}-4 U}}{2}
\end{aligned}
$$

Observe that its always true that $V^{2} \geq 4 U$ (since $(x+y)^{2} \geq 4 x y$ for all x, y), so that the above functions are indeed real-valued. This a one to one, continuous function mapping pairs (u, v) satisfying $v^{2}-4 u \geq 0$ to pairs (M, m) satisfying $M \geq m$.

Thus, let us first change variables from (X, Y) to $M=\max (X, Y)$ and $m=\min (X, Y)$. We have

$$
P(M \leq x, m \leq y)=2 P(X \leq x, Y \leq y)-P(X \leq y)^{2} \text { when } x \geq y
$$

and

$$
P(M \leq x, m \leq y)=P(X \leq x)^{2} \text { when } x<y
$$

Differentiating with respect to both variables, we obtain:

$$
f_{M, m}(x, y)=2 e^{-x-y}, \text { when } \mathrm{x} \geq \mathrm{y}
$$

Now we use the change of variables formula. The Jacobian is

$$
J_{g^{-1}}(u, v)=\operatorname{det}\left(\begin{array}{cc}
-\frac{1}{\sqrt{v^{2}-4 u}} & \frac{1}{2}+\frac{v}{2 \sqrt{v^{2}-4 u}} \\
\frac{1}{\sqrt{v^{2}-4 u}} & \frac{1}{2}-\frac{v}{2 \sqrt{v^{2}-4 u}}
\end{array}\right)=-\frac{1}{\sqrt{v^{2}-4 u}}
$$

so that $|J|=1 / \sqrt{v^{2}-4 u}$. Thus the answer is

$$
f_{U, V}(u, v)=2 \frac{e^{-v}}{\sqrt{v^{2}-4 u}}, \text { for all } u, v \geq 0 \text { satisfying } v^{2}-4 u \geq 0
$$

Since this distribution does not factor, U and V are not independent.
Remark: There is a considerably simpler derivation of the Jacobian. We will compute the Jacobian of the forward transformation $(x, y) \rightarrow(u, v)$ and take its inverse. The forward Jacobian is

$$
\operatorname{det}\left(\begin{array}{cc}
y & x \\
1 & 1
\end{array}\right)=y-x
$$

Now observe that

$$
(x-y)^{2}=(x+y)^{2}-4 x y=v^{2}-4 u
$$

which immediately gives us $\left|J_{g^{-1}}\right|=1 / \sqrt{v^{2}-4 u}$.

MIT OpenCourseWare
http://ocw.mit.edu

6.436J / 15.085J Fundamentals of Probability

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

