MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Fall 2008
Midterm exam, 7-9pm (120 mins/100 pts)

Problem 1: (15 points)
Let $\left\{X_{n}\right\}$ be a sequence of random variables (i.e., measurable functions) defined on the same probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Show, from first principles (i.e., only using the definition of σ-fields and of measurability) that the event $\left\{\sup _{n} X_{n}<\right.$ $c\}$ is measurable.

Solution: Observe that the event

$$
\sup _{n} X_{n} \leq c,
$$

is measurable for any c because

$$
\left\{\sup _{n} X_{n} \leq c\right\}=\bigcap_{n}\left\{X_{n} \leq c\right\},
$$

and now we can just write

$$
\left\{\sup _{n} X_{n}<c\right\}=\bigcup_{n=1}^{\infty}\left\{\sup _{n} X_{n} \leq c-1 / n\right\},
$$

so the event in question is a countable union of measurable sets.
Problem 2: (15 points)
Let $\left\{X_{n}\right\}$ and $\left\{Y_{n}\right\}$ be two nondecreasing sequences of random variables, defined on the same probability space $(\Omega, \mathcal{F}, \mathbb{P})$. (That is, $X_{n}(\omega) \leq X_{n+1}(\omega)$, for all ω, and similarly for Y_{n}.) Let $X=\lim _{n \rightarrow \infty} X_{n}$ and $Y=\lim _{n \rightarrow \infty} Y_{n}$. Assume that for every n, the random variables X_{n} and Y_{n} are independent. Show (using only the definitions and basic facts about measures) that X and Y are independent. Hint: Use the definition of independence in terms of CDFs.

Solution: Observe that

$$
\{X \leq x, Y \leq y\}=\bigcap_{i=1}^{\infty}\left\{X_{i} \leq x, Y_{i} \leq y\right\}
$$

Indeed, if ω is in the set on the left-hand side, then it must be in each set onn the right-hand side since $X_{i}(\omega) \leq X(\omega)$ and $Y_{i}(\omega) \leq Y(\omega)$ for all i. Conversely, if
ω belongs to each of the sets on the right hand side, then $X_{i}(\omega) \leq x, Y_{i}(\omega) \leq y$ for all i, and passing to the limit we get $X(\omega) \leq x, Y(\omega) \leq y$, so ω must belong to the set on the left-hand side.

The monotonicity of X_{i}, Y_{i} implies that $\left\{X_{i} \leq x, Y_{i} \leq y\right\}$ is a decreasing sequence. So, using the continuity property of probability measures

$$
\mathbb{P}(X \leq x, Y \leq y)=\lim _{n} \mathbb{P}\left(X_{n} \leq x, Y_{n} \leq y\right),
$$

and now we use the independence of X_{n}, Y_{n} to get
$\mathbb{P}(X \leq x, Y \leq y)=\lim _{n} \mathbb{P}\left(X_{n} \leq x\right) \mathbb{P}\left(Y_{n} \leq y\right)=\lim _{n} \mathbb{P}\left(X_{n} \leq x\right) \lim _{n} \mathbb{P}\left(Y_{n} \leq y\right)$, and now using continuity of probabilities again,

$$
\mathbb{P}(X \leq x, Y \leq y)=\mathbb{P}(X \leq x) \mathbb{P}(Y \leq y)
$$

which is what we needed to show.
Problem 3: (15 points)
Let F_{1} and F_{2} be two CDFs, and suppose that $F_{1}(t)<F_{2}(t)$, for all t. Assume that F_{1} and F_{2} are continuous and strictly increasing. Show that there exist random variables X_{1} and X_{2}, with CDFs F_{1} and F_{2}, defined on the same probability space such that $X_{1}>X_{2}$.

Solution: Observe that since $F_{1}(t), F_{2}(t)$ are continuous and strictly increasing, the functions $F_{1}^{-1}(t), F_{2}^{-1}(t)$ are well-defined when $t \in(0,1)$. Let U be a uniform random variable in $(0,1)$ and let

$$
\begin{aligned}
& X_{1}=F_{1}^{-1}(U) \\
& X_{2}=F_{2}^{-1}(U)
\end{aligned}
$$

Then the CDF of X_{1} is F_{1} since

$$
\mathbb{P}\left(X_{1} \leq t\right)=\mathbb{P}\left(F_{1}^{-1}(U) \leq t\right)=\mathbb{P}\left(U \leq F_{1}(t)\right)=F_{1}(t)
$$

and similarly the DF of X_{2} is F_{2}. Since $F_{2}>F_{1}$ it follows that $F_{2}^{-1}<F_{1}^{-1}$ and so $X_{1}>X_{2}$.

Problem 4: (20 points)
Let $\left\{X_{n}\right\}$ be a sequence of independent random variables. Show that $\sup _{n} X_{n}<$ ∞, a.s., if and only if $\sum_{n=1}^{\infty} \mathbb{P}\left(X_{n}>c\right)<\infty$ for some c.

Remark: The problem indicates that X_{i} are random variables (as opposed to extended-valued random variables), which means that their range is the real numbers. On the other hand, we can't say the same about $\sup _{i} X_{i}$, since it can take the value of $+\infty$.

Solution: Suppose $\sum_{n=1}^{\infty} \mathbb{P}\left(X_{n}>c\right)=\infty$ for all c. For any c, the probability of $\sup _{i} X_{i}<c$ must be 0 since the event $X_{i}>c$ occurs infinitely often with probability 1 by the Borel-Cantelli lemma. It follows that

$$
\mathbb{P}\left(\sup _{i} X_{i} \text { finite }\right)=\mathbb{P}\left(\cup_{n=0}^{\infty} \sup _{i} X_{i}<n\right) \leq \sum_{n} \mathbb{P}\left(\sup _{i} X_{i}<n\right)=\sum_{n} 0=0
$$

so $\sup _{i} X_{i}$ must equal $+\infty$ with probability 1 .
Suppose that for some $c, \sum_{n=1}^{\infty} \mathbb{P}\left(X_{n}>c\right)<\infty$. By the Borel-Cantelli lemma, this means that with probability 1 , the number of times $X_{i}>c$ is finite. If $X_{i}>c$ occurs finitely many times, then $\sup _{i} X_{i}$ is finite, and it follows that $\sup _{i} X_{i}$ is finite with probability 1.

Problem 5: (20 points)
Let X be a continuous nonnegative random variable with PDF f. Let $N=\lfloor X\rfloor$ be the integer part of X (i.e., N is the largest integer that satisfies $N \leq X$). Let $U=X-N$.
(a) Write down an expression (in terms of f) for the conditional PDF $f_{U \mid N}(u \mid$ $n)$ of U, given N.
(b) Write down an expression for the PDF of U.
(c) Write down an expression for the conditional PMF of N given U.

Solution:

(a)

$$
f_{U \mid N}(u \mid n)=\frac{f_{U, N}(u, n)}{f_{N}(n)}=\frac{f(u+n)}{\int_{n}^{n+1} f(x) d x}
$$

where $u \in[0,1)$, and n is a nonnegative integer.
(b)
$f_{U}(u)=\sum_{n=0}^{\infty} f_{U \mid N}(u \mid n) f_{N}(n)=\sum_{n=0}^{\infty} \frac{f(u+n)}{\int_{n}^{n+1} f(x) d x} \int_{n}^{n+1} f(x) d x=\sum_{n=0}^{\infty} f(u+n)$,
for $u \in[0,1)$.
(c)

$$
f_{N \mid U}(n \mid u)=\frac{f_{N, U}(n, u)}{f_{U}(u)}=\frac{f(n+u)}{\sum_{k=0}^{\infty} f(k+u)},
$$

for n integer, $u \in[0,1)$.

Problem 6: (15 points)
Let X and Y be positive continuous random variables with known joint PDF $f_{X, Y}$. Find an expression for the joint PDF of X and $X Y$.

Solution: If $U=X, V=X Y$, then $X=U, Y=V / U$, and the determinant of the Jacobian of the inverse transformation is

$$
\left|\left[\begin{array}{cc}
1 & 0 \\
-v / u^{2} & 1 / u
\end{array}\right]\right|=\frac{1}{u},
$$

so that

$$
f_{U, V}(u, v)=\frac{1}{u} f_{X, Y}(u, v / u)
$$

for $u, v>0$.

MIT OpenCourseWare
http://ocw.mit.edu

6.436J / 15.085J Fundamentals of Probability

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

