MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Fall 2008
Notes from Recitation 2

1 Problem 1: Coin Tosses

Show that the set S of sequences where the average number of heads has a limit $l \in[0,1]$ is measurable.

Solution:

Let's rewrite the definition of limit as a set of countable constraints:

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \omega_{i}
$$

exists and equals l if and only if for any positive integer m, there exists some N such that for all $n \geq N$, we have

$$
\left|\frac{1}{n} \sum_{i=1}^{n} \omega_{i}-l\right|<\frac{1}{m}
$$

It's not hard to see that this is equivalent to the standard definition of the limit. Let's define the sets

$$
S_{\varepsilon, N}=\left\{\omega: \mid \text { for all } n \geq N,\left|\frac{1}{n} \sum_{i=1}^{n} \omega_{i}-l\right|<\varepsilon\right\} .
$$

Rewriting the above limit definition by replacing "exists" and "for all" operators with their equivalent unions and intersections, we get

$$
S=\cap_{m=1}^{\infty} \cup_{N=1}^{\infty} S_{1 / m, N}
$$

Now define sets:

$$
S_{\varepsilon, n}=\left\{\omega:\left|\frac{1}{n} \sum_{i=1}^{n} \omega_{i}-l\right|<\varepsilon\right\} .
$$

Then it is clear that $S_{\varepsilon, n} \in \mathcal{F}_{n}$. Furthermore,

$$
S_{1 / m, N}=\bigcap_{n=N}^{\infty} S_{1 / m, n}
$$

so putting it all together, we have

$$
S=\bigcap_{m=1}^{\infty} \bigcup_{N=1}^{\infty} \bigcap_{n=N}^{\infty} S_{\frac{1}{m}, n},
$$

and thus $S \in \mathcal{F}$.

2 Problem 2: Coin Tosses

Let \mathcal{F} be the σ-field corresponding to the infinite coin toss model. Let S be the set of sequences such that there exists some time t, so that the number of heads that come after time t is always greater than or equal to the number of tails that come after time t. (So it does not matter what happens before time $t)$. Show that $S \in \mathcal{F}$.

Solution: In symbols, we have

$$
S=\left\{\omega: \exists t \text { s.t. } \sum_{j=t+1}^{t+k} w_{j} \geq\left\lceil\frac{k}{2}\right\rceil, \quad \forall k\right\}
$$

Also define the sets:

$$
\begin{aligned}
S_{t} & =\left\{\omega: \sum_{j=t+1}^{t+k} w_{j} \geq\left\lceil\frac{k}{2}\right\rceil, \quad \forall k\right\} \\
S_{t, k} & =\left\{\omega: \sum_{j=t+1}^{t+k} w_{j} \geq\left\lceil\frac{k}{2}\right\rceil\right\} .
\end{aligned}
$$

Now observe that $S_{t, k} \in \mathcal{F}_{t+k}$, and hence $S_{t, k} \in \mathcal{F}$. In addition, we have

$$
S_{t}=\bigcap_{k=1}^{\infty} S_{t, k}
$$

and also

$$
\begin{aligned}
S & =\bigcup_{t=1}^{\infty} S_{t} \\
& =\bigcup_{t=1}^{\infty} \bigcap_{k=1}^{\infty} S_{t, k},
\end{aligned}
$$

and therefore $S \in \mathcal{F}$. Note how the infinite intersections and unions correspond to the operators " \forall " and " \exists."

3 Borel-Cantelli

Here are a few simple observations related to the Borel-Cantelli lemma.

1. Consider an infinite sequences of independent coin tosses, with probability of landing on heads being $p>0$ (this model was constructed rigorously in lecture $2)$. Can we show that a head occurs infinitely often with probability 1 ?

This follows from the Borel-Cantelli lemma since $\sum_{i=1}^{\infty} p=\infty$, and distinct coin tosses are independent.
2. Can the same be said for any pattern, that is, any pattern occurs infinitely often with probability 1? A pattern is understood to mean something like 5 heads, followed by 17 tails, followed by 3 heads.

This can be done by the same argument as above. Let K be some number so that the pattern has a chance $p^{*}>0$ of occuring in the first K flips. In the above example, we can pick $K=25$, and the probability of the pattern occuring is $p^{*}=p^{5}(1-p)^{17} p^{3}$. Let A_{i} be the event that the pattern occurs in the i^{\prime} th block of K flips. The Borel-Cantelli lemma gives again that $\sum_{i=1}^{\infty} p^{*}=\infty$, and since A_{i} are independent, we can conclude they occur infinitely often.
3. Consider two scenarios. In the first, the probability of landing on heads in the i 'th toss is $1 / n$. In the second, its $1 / n^{2}$. As before, coin tosses are independent.

A fact from analysis is that while

$$
\sum_{i=1}^{n} \frac{1}{n}=\infty
$$

its true that

$$
\sum_{i=1}^{n} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

This implies that in the first scenario, the coin lands on heads infinitely often, while in the second scenario, heads only occurs finitely often.

MIT OpenCourseWare
http://ocw.mit.edu

6.436J / 15.085J Fundamentals of Probability

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

