MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Fall 2006
15.085/6.436

Recitation 4

1 Inclusion-Exclusion Formula

We know that

$$
P\left(A_{1} \bigcup A_{2}\right)=P\left(A_{1}\right)+P\left(A_{2}\right)-P\left(A_{1} \bigcap A_{2}\right)
$$

Can we generalize this formula to n events $A_{1}, A_{2}, \ldots, A_{n}$?

Theorem:

$$
P\left(\bigcup_{i=1}^{n} A_{i}\right)=\sum_{j} P\left(A_{j}\right)-\sum_{j<k} P\left(A_{j} \bigcap A_{k}\right)+\sum_{j<k<l} P\left(A_{j} \bigcap A_{k} \bigcap A_{l}\right)-\cdots+(-1)^{n+1} P\left(\bigcap_{j=1}^{n} A_{j}\right)
$$

Before proving this, we derive the following identity. Since

$$
(x+y)^{n}=\sum_{i=1}^{n}\binom{n}{i} x^{i} y^{n-i}
$$

it follows that

$$
\begin{equation*}
0=(-1+1)^{n}=\sum_{i=1}^{n}(-1)^{i}\binom{n}{i} \tag{1}
\end{equation*}
$$

Proof: Let I_{k} be the indicator function of the event A_{k}, and let I be the indicator function of the event $\bigcup_{i=1}^{n} A_{i}$. We need to show that

$$
\begin{equation*}
I=\sum_{j} I_{j}-\sum_{j<k} I_{j} I_{l}+\sum_{j<k<l} I_{j} I_{k} I_{l}-\cdots+(-1)^{n} \prod_{j} I_{j} \tag{2}
\end{equation*}
$$

and then the theorem will follow by taking expectation of both sides. We will show that both sides of the above equation evaluate to the same thing for all events ω.

Let ω be an element of the sample space, and let Z be the number of sets A_{i} such that $\omega \in A_{i}$. If $Z=0$, then both sides of Eq. (2) evaluate to 0 . Suppose now that $Z>0$. Then the left hand side of Eq. (2) is 1 while the right hand side is

$$
\sum_{i=1}^{Z}(-1)^{i+1} S_{i}(\omega)
$$

where $S_{i}(\omega)$ is the number of nonzero terms in the sum

$$
\sum_{j_{1}<j_{2}<\cdot<j_{i}} I_{j_{1}} I_{j_{2}} \cdots I_{j_{i}}
$$

In other words, $S_{i}(\omega)$ is the number of different groups of i events ω belongs to. But since ω belongs to a total of Z of the events A_{1}, \ldots, A_{n}, it follows that

$$
S_{i}(\omega)=\binom{Z}{i}
$$

so that the right-hand side of Eq. (2 is

$$
\sum_{i=1}^{Z}(-1)^{i+1}\binom{Z}{i}
$$

or

$$
1-\sum_{i=0}^{Z}(-1)^{i}\binom{Z}{i}
$$

which by Eq. (1) is equal to 1 .

2 Joint Lives

Of the $2 n$ people in a given collection of n couples, exactly m die. Assuming that the m have been picked at random, find the mean number of surviving couples. Hint: Use indicator functions.

Solution

Let N be the random number of surviving couples. For the couple indexed by $i=1, \ldots, n$, let A_{i} (resp. B_{i}) the event that the first (resp. second) partner of couple i survives.
$N=\sum_{i=1}^{n} \mathbf{1}_{A_{i}} \mathbf{1}_{B_{i}}$ Hence, $E[N]=\sum_{i=1}^{n} E\left[\mathbf{1}_{A_{i}} \mathbf{1}_{B_{i}}\right]=n E\left[\mathbf{1}_{A_{1}} \mathbf{1}_{B_{1}}\right]$.
On the other hand, observe that $E\left[\mathbf{1}_{A_{1}} \mathbf{1}_{B_{1}}\right]=\mathbb{P}($ a couple survives $)=$ $\frac{2 n-m}{2 n} \frac{2 n-1-m}{2 n-1}$ since the first partner survives with probability $\frac{2 n-m}{2 n}$ and the second survives with probability $\frac{2 n-1-m}{2 n-1}$ given that the first person survives.

Hence, $E[N]=n \frac{2 n-m}{2 n} \frac{2 n-1-m}{2 n-1}$.

3 Uniform random variables and infinite coin tosses

See appendix B of lecture 5 .

MIT OpenCourseWare
http://ocw.mit.edu

6.436J / 15.085J Fundamentals of Probability

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

