MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Fall 2006
15.085/6.436

Recitation 4

1 Sums of Random Variables

1.1 The Discrete Case

Let $W=X+Y$, where X and Y are independent integer-valued random variables with pmfs $f_{X}(x)$ and $f_{Y}(y)$. Then, for any integer w ,

$$
\begin{aligned}
f_{W}(w) & =\mathbb{P}(X+Y=w) \\
& =\sum_{x+y=w} \mathbb{P}(X=x, Y=y) \\
& =\sum_{x} \mathbb{P}(X=x, Y=w-x) \\
& =\sum_{x} f_{X}(x) f_{Y}(w-x) .
\end{aligned}
$$

The resulting pmf f_{W} is called the convolution of the pmfs of X and Y.

1.2 The Continuous Case

Let X and Y be independent continuous random variables with pdfs $f_{X}(x)$ and $f_{Y}(y)$. We wish to find the pdf of $W=X+Y$. We have

$$
\begin{aligned}
F_{W}(w) & =\mathbb{P}(W \leq w) \\
& =\int_{x=-\infty}^{\infty} \int_{y=-\infty}^{w-x} f_{X}(x) f_{Y}(y) d y d x \\
& =\int_{x=-\infty}^{\infty} f_{X}(x) F_{Y}(w-x) d x .
\end{aligned}
$$

Differentiating, and assuming everything is 'nice',

$$
\begin{aligned}
f_{W}(w) & =\frac{d F_{W}}{d w}(w) \\
& =\int_{x=-\infty}^{\infty} f_{X}(x) \frac{d}{d w} F_{Y}(w-x) d x \\
& =\int_{x=-\infty}^{\infty} f_{X}(x) f_{Y}(w-x) d x .
\end{aligned}
$$

This last formula is again known as the convolution of f_{X} and f_{Y}.
Problem. Suppose both X, Y are distributed according to the law $P(V \leq$ $v)=1-e^{-\lambda v}$, when $v \geq 0$ and 0 otherwise. Find the pdf of $Z=X+Y$.
Solution: Using the convolution formula, for $z \geq 0$,

$$
\begin{aligned}
f_{Z}(z) & =\int_{x=-\infty}^{\infty} f_{X}(x) f_{Y}(z-x) d x \\
& =\int_{0}^{z} \lambda^{2} e^{-\lambda x} e^{-\lambda(z-x)} d x \\
& =\lambda^{2} e^{-\lambda z} \int_{0}^{z} d x \\
& =\lambda^{2} z e^{-\lambda z}
\end{aligned}
$$

Problem: On the other hand, Gaussianity is preserved under convolution: the convolution of two Gaussians is a Gaussian. Let's work this out for Gaussians of mean zero and variance one. Suppose X and Y are independent and have the distribution

$$
\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}
$$

Let $W=X+Y$. Then,

$$
\begin{aligned}
f_{W}(w) & =\int_{-\infty}^{+\infty} e^{-x^{2} / 2} e^{-(w-x)^{2} / 2} d x \\
& =\int_{-\infty}^{+\infty} e^{-x^{2}} e^{-w^{2} / 2-w x} d x \\
& =e^{-w^{2} / 4} \int_{-\infty}^{+\infty} e^{-(x-w / 2)^{2}} d x
\end{aligned}
$$

and now observe that the integral actually does not depend on w, so that

$$
f_{W}(w)=c e^{-w^{2} / 4}
$$

Since the normalizing constant c must be chosen so that $f_{W}(w)$ integrates to 1 , we recognize f_{W} as the density of a normal with mean 0 and variance 2.

MIT OpenCourseWare
http://ocw.mit.edu

6.436J / 15.085J Fundamentals of Probability

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

