6.436J/15.085J	Fall 2007
Recitation 10	10/31/2007

Convergence of Random Variables

1 Review of Definitions

Let $X_i, i = 1, ...$, be a collection of random variables. The sample space on which X_i is defined will be denoted by Ω_i . Let X be a random variable on a sample space Ω . We will consider ways to make meaning of the statement " X_i converges to X."

The two following definitions assume $\Omega = \Omega_1 = \Omega_2 = \cdots$.

Almost sure convergence. We will say that X_i converges to X almost surely if $X_i(\omega)$ approaches $X(\omega)$ for all $\omega \in \Omega$, except possibly in a set of measure zero.

Convergence in probability. We will say that X_i converges to X in probability if $P(|X_i - X| > \epsilon)$ approaches 0 as i goes to infinity, for any $\epsilon > 0$..

The next definition does not require Ω_i to be identical.

Convergence in distribution. We will say that X_i converges to X in distribution if the function F_{X_i} converges to the function F_X at all points where F_X is continuous.

2 The relationship between convergence almost surely and convergence in probability

Theorem. Suppose X_i converges to X almost surely. Then, X_i converges to X in probability.

Proof. Fix $\epsilon > 0$. Define $A_n(\epsilon)$ to be the set where X_n differs from X by at least ϵ :

$$A_n(\epsilon) = \{ w \in \Omega : |X_n(w) - X(w)| > \epsilon. \}$$

Let $A(\epsilon)$ be the set of ω which are in some $A_n(\epsilon)$ infinitely often:

$$A(\epsilon) = \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} A_n(\epsilon).$$

If $\omega \in A(\epsilon)$, then $X_n(\omega)$ cannot converge to $X(\omega)$; this means that $A(\epsilon)$ is a subset of a set of measure 0, and therefore

$$P(A(\epsilon)) = 0.$$

However, $A(\epsilon)$ is the intersection of a decreasing sequence of sets; applying the continuity of probability,

$$\lim_{k \to \infty} P(\bigcup_{n=k}^{\infty} A_n(\epsilon)) = 0$$

Since $A_k \subset \bigcup_{n=k}^{\infty} A_n(\epsilon)$, this implies

$$\lim_{k \to \infty} P(A_k(\epsilon)) = 0,$$

which means that X_k converges to X in probability.

Remark: The converse of the above theorem is not true. Suppose X_i converges to X in probability. It may be that X_i does not approach X almost surely.

Indeed, let X_n be the random variable which takes value 1 with probability 1/n, and value 0 with probability 1 - 1/n. Let X be the random variable thats identically zero. We have that X_n converges to X in probability:

$$P(|X_n - X| > \epsilon) \le \frac{1}{n},$$

for any positive ϵ . As *n* approaches infinity, $P(|X_n - X| > \epsilon)$ will approach zero.

On the other hand, by the Borel-Cantelli lemma, $X_n = 1$ infinitely often with probability 1, so that $P(A(\epsilon)) = 1$ for any ϵ . If X_n approached X almost surely, then we would have $P(A(\epsilon)) = 0$.

3 The relationship between convergence in probability and convergence in distribution

Theorem. Suppose X_i converges to X in probability. Then X_i converges to X in distribution.

2

Proof: Let $F_i(x)$ denote the distribution function of X_i and F(x) denote the distribution function of X. We can write

$$F_n(x) = P(X_n \le X)$$

= $P(X_n \le X, X \le x + \epsilon) + P(X_n \le x, X > x + \epsilon)$
 $\le F(x + \epsilon) + P(|X_n - X| > \epsilon).$

This inequality holds for all n and ϵ . It gives us an upper bound on F_n in terms of F. To obtain a lower bound, we argue as:

$$F(x-\epsilon) = P(X \le x-\epsilon)$$

= $P(X \le x-\epsilon, X_n \le x) + P(X \le x-\epsilon, X_n > x)$
 $\le F_n(x) + P(|X_n - X| > \epsilon)$

The last part can be rewritten as

$$F_n(x) \ge F(x-\epsilon) - P(|X_n - X| > \epsilon).$$

Let us now combine the upper and lower bounds:

$$F(x-\epsilon) + P(|X_n - X| > \epsilon) \le F_n(x) \le F(x+\epsilon) + P(|X_n - X| > \epsilon).$$

Again, note this equation holds for all ϵ and for all n. Let us take the limit of both sides as n approaches infinity, and then as $\epsilon \to 0$; we obtain that if F is continuous at x, then

$$\lim_{n} F_n(x) = F(x).$$

Remark: The converse of this theorem does not hold. Indeed, even assuming X_i approach X in distribution, they may not even be defined on the same space.

We can, however, refine the question as follows. Suppose X_i approach X in distribution and $\Omega = \Omega_1 = \Omega_2 = \cdots$. Will it always be true that X_i approach X in probability?

The answer is no. This was discussed in class: suppose $X, X_1, X_2, ...$ are all independent N(0, 1) Gaussians. Certainly, X_i converges to X in distribution, since all the distributions are equal. However, $X_i - X = N(0, 2)$, which does not become concentrated around 0 as *i* grows.

4 Some special cases

We now catalog some special cases when stronger statements can be made about the relationship between various types of convergence.

Theorem: Suppose X_i converges to X in probability. Then there exists a sequence of integers n_1, n_2, \ldots such that X_{n_i} converges to X almost surely.

Proof: We know that $P(|X_k - X| > \frac{1}{i})$ approaches 0 as k approaches ∞ ; pick n_i with the property that

$$P(|X_{n_i} - X| > \frac{1}{i}) < \frac{1}{i^2}.$$

Let A_i be the event that $|X_{n_i} - X| > 1/i$ and let A be the event " A_i occurs infinitely often." Note that X_{n_i} converges to X on A^c . But the Borel-Cantelli lemma says that the probability of A is zero.

Theorem: Suppose X_i converges to a constant c in distribution. Then, X_i converges to X in probability.

Remark: Observe that since the constant random variable can be defined on any space, we do not run into problems when writing expressions like $P(|X_i - c| > \epsilon)$.

Proof: We have that

$$P(|X_i - c| > \epsilon) = P(X_i > c + \epsilon) + P(X_i < c - \epsilon)$$

$$\leq (1 - F_i(c + \epsilon)) + F_i(c - \epsilon).$$

We know that $F_i(x)$ converges to the function $1_{[c,+\infty)}(x)$ for all $x \neq c$. This means that $F_i(c + \epsilon)$ approaches 1 and $F_i(c - \epsilon)$ approaches 0 as *i* approaches infinity. Thus $P(|X_i - c| > \epsilon)$ is sandwiched between 0 and a sequence that approaches 0 as *i* approaches infinity; therefore, it must approach zero.

6.436J / 15.085J Fundamentals of Probability Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.