MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Convergence of Random Variables

1 Review of Definitions

Let $X_{i}, i=1, \ldots$, be a collection of random variables. The sample space on which X_{i} is defined will be denoted by Ω_{i}. Let X be a random variable on a sample space Ω. We will consider ways to make meaning of the statement " X_{i} converges to X."

The two following definitions assume $\Omega=\Omega_{1}=\Omega_{2}=\cdots$.
Almost sure convergence. We will say that X_{i} converges to X almost surely if $X_{i}(\omega)$ approaches $X(\omega)$ for all $\omega \in \Omega$, except possibly in a set of measure zero.

Convergence in probability. We will say that X_{i} converges to X in probability if $P\left(\left|X_{i}-X\right|>\epsilon\right)$ approaches 0 as i goes to infinity, for any $\epsilon>0$..

The next definition does not require Ω_{i} to be identical.
Convergence in distribution. We will say that X_{i} converges to X in distribution if the function $F_{X_{i}}$ converges to the function F_{X} at all points where F_{X} is continuous.

2 The relationship between convergence almost surely and convergence in probability

Theorem. Suppose X_{i} converges to X almost surely. Then, X_{i} converges to X in probability.

Proof. Fix $\epsilon>0$. Define $A_{n}(\epsilon)$ to be the set where X_{n} differs from X by at least ϵ :

$$
A_{n}(\epsilon)=\left\{w \in \Omega:\left|X_{n}(w)-X(w)\right|>\epsilon .\right\}
$$

Let $A(\epsilon)$ be the set of ω which are in some $A_{n}(\epsilon)$ infinitely often:

$$
A(\epsilon)=\cap_{k=1}^{\infty} \cup_{n=k}^{\infty} A_{n}(\epsilon)
$$

If $\omega \in A(\epsilon)$, then $X_{n}(\omega)$ cannot converge to $X(\omega)$; this means that $A(\epsilon)$ is a subset of a set of measure 0 , and therefore

$$
P(A(\epsilon))=0
$$

However, $A(\epsilon)$ is the intersection of a decreasing sequence of sets; applying the continuity of probability,

$$
\lim _{k \rightarrow \infty} P\left(\cup_{n=k}^{\infty} A_{n}(\epsilon)\right)=0
$$

Since $A_{k} \subset \cup_{n=k}^{\infty} A_{n}(\epsilon)$, this implies

$$
\lim _{k \rightarrow \infty} P\left(A_{k}(\epsilon)\right)=0
$$

which means that X_{k} converges to X in probability.
Remark: The converse of the above theorem is not true. Suppose X_{i} converges to X in probability. It may be that X_{i} does not approach X almost surely.

Indeed, let X_{n} be the random variable which takes value 1 with probability $1 / n$, and value 0 with probability $1-1 / n$. Let X be the random variable thats identically zero. We have that X_{n} converges to X in probability:

$$
P\left(\left|X_{n}-X\right|>\epsilon\right) \leq \frac{1}{n}
$$

for any positive ϵ. As n approaches infinity, $P\left(\left|X_{n}-X\right|>\epsilon\right)$ will approach zero.

On the other hand, by the Borel-Cantelli lemma, $X_{n}=1$ infinitely often with probability 1 , so that $P(A(\epsilon))=1$ for any ϵ. If X_{n} approached X almost surely, then we would have $P(A(\epsilon))=0$.

3 The relationship between convergence in probability and convergence in distribution

Theorem. Suppose X_{i} converges to X in probability. Then X_{i} converges to X in distribution.

Proof: Let $F_{i}(x)$ denote the distribution function of X_{i} and $F(x)$ denote the distribution function of X. We can write

$$
\begin{aligned}
F_{n}(x) & =P\left(X_{n} \leq X\right) \\
& =P\left(X_{n} \leq X, X \leq x+\epsilon\right)+P\left(X_{n} \leq x, X>x+\epsilon\right) \\
& \leq F(x+\epsilon)+P\left(\left|X_{n}-X\right|>\epsilon\right)
\end{aligned}
$$

This inequality holds for all n and ϵ. It gives us an upper bound on F_{n} in terms of F. To obtain a lower bound, we argue as:

$$
\begin{aligned}
F(x-\epsilon) & =P(X \leq x-\epsilon) \\
& =P\left(X \leq x-\epsilon, X_{n} \leq x\right)+P\left(X \leq x-\epsilon, X_{n}>x\right) \\
& \leq F_{n}(x)+P\left(\left|X_{n}-X\right|>\epsilon\right)
\end{aligned}
$$

The last part can be rewritten as

$$
F_{n}(x) \geq F(x-\epsilon)-P\left(\left|X_{n}-X\right|>\epsilon\right)
$$

Let us now combine the upper and lower bounds:

$$
F(x-\epsilon)+P\left(\left|X_{n}-X\right|>\epsilon\right) \leq F_{n}(x) \leq F(x+\epsilon)+P\left(\left|X_{n}-X\right|>\epsilon\right)
$$

Again, note this equation holds for all ϵ and for all n. Let us take the limit of both sides as n approaches infinity, and then as $\epsilon \rightarrow 0$; we obtain that if F is continuous at x, then

$$
\lim _{n} F_{n}(x)=F(x)
$$

Remark: The converse of this theorem does not hold. Indeed, even assuming X_{i} approach X in distribution, they may not even be defined on the same space.

We can, however, refine the question as follows. Suppose X_{i} approach X in distribution and $\Omega=\Omega_{1}=\Omega_{2}=\cdots$. Will it always be true that X_{i} approach X in probability?

The answer is no. This was discussed in class: suppose X, X_{1}, X_{2}, \ldots are all independent $N(0,1)$ Gaussians. Certainly, X_{i} converges to X in distribution, since all the distributions are equal. However, $X_{i}-X=N(0,2)$, which does not become concentrated around 0 as i grows.

4 Some special cases

We now catalog some special cases when stronger statements can be made about the relationship between various types of convergence.

Theorem: Suppose X_{i} converges to X in probability. Then there exists a sequence of integers n_{1}, n_{2}, \ldots such that $X_{n_{i}}$ converges to X almost surely.

Proof: We know that $P\left(\left|X_{k}-X\right|>\frac{1}{i}\right)$ approaches 0 as k approaches ∞; pick n_{i} with the property that

$$
P\left(\left|X_{n_{i}}-X\right|>\frac{1}{i}\right)<\frac{1}{i^{2}} .
$$

Let A_{i} be the event that $\left|X_{n_{i}}-X\right|>1 / i$ and let A be the event " A_{i} occurs infinitely often." Note that $X_{n_{i}}$ converges to X on A^{c}. But the Borel-Cantelli lemma says that the probability of A is zero.

Theorem: Suppose X_{i} converges to a constant c in distribution. Then, X_{i} converges to X in probability.

Remark: Observe that since the constant random variable can be defined on any space, we do not run into problems when writing expressions like $P\left(\left|X_{i}-c\right|>\right.$ $\epsilon)$.

Proof: We have that

$$
\begin{aligned}
P\left(\left|X_{i}-c\right|>\epsilon\right) & =P\left(X_{i}>c+\epsilon\right)+P\left(X_{i}<c-\epsilon\right) \\
& \leq\left(1-F_{i}(c+\epsilon)\right)+F_{i}(c-\epsilon) .
\end{aligned}
$$

We know that $F_{i}(x)$ converges to the function $1_{[c,+\infty)}(x)$ for all $x \neq c$. This means that $F_{i}(c+\epsilon)$ approaches 1 and $F_{i}(c-\epsilon)$ approaches 0 as i approaches infinity. Thus $P\left(\left|X_{i}-c\right|>\epsilon\right)$ is sandwiched between 0 and a sequence that approaches 0 as i approaches infinity; therefore, it must approach zero.

MIT OpenCourseWare
http://ocw.mit.edu

6.436J / 15.085J Fundamentals of Probability

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

