MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Poisson Processes

1 Counting processes

A stochastic process $N(t), t \geq 0$ is said to be a counting process if $N(t)$ satisfies the following properties:

1. $N(t) \geq 0$.
2. $N(t)$ is integer valued.
3. If $s<t$, then $N(s) \leq N(t)$.

Intuitively, $N(t)$ represents the number of events that have occurred up to time t.

A counting process is said to possess independent increments if $a_{1} \leq a_{2} \leq$ $\cdots \leq a_{k}$ implies that the random variables $N\left(a_{2}\right)-N\left(a_{1}\right), N\left(a_{3}\right)-N\left(a_{2}\right), \ldots, N\left(a_{k}\right)-$ $N\left(a_{k-1}\right)$. Intuitively, the number of events occurring in one interval should be independent of the number of events occurring in another interval, provided the intervals are disjoint.

A counting process is said to possess stationary increments if $N(s+t)-$ $N(s)$ depends only on t. Intuitively, the number of events that occur in an interval depends only on its length.

2 Poisson processes

A counting process is said to be Poisson with rate $\lambda>0$ if it has the following properties:

1. $N(0)=0$.
2. The process has stationary and independent intervals.
3. $P(N(h)=1)=\lambda h+o(h)$.
4. $P(N(h) \geq 2)=o(h)$.

Poisson processes may be defined in a different way. A process is said to be Poisson with rate $\lambda>0$, if

1. $N(0)=0$.
2. The process has independent increments.
3. For all $s, t \geq 0$,

$$
P(N(s+t)-N(s)=n)=e^{-\lambda t} \frac{(\lambda t)^{n}}{n!}
$$

Claim: The two definitions of a Poisson process are equivalent.

Proof: That the second definition implies the first follows immediately from the taylor series of $e^{-\lambda t}$. To show that the first definition implies the second, we argue as follows.

Lets use the shorthand $P_{n}(t)=P(N(t)=n)$. First, let's derive the expression for $P_{0}(t)$. The assumptions of independence and stationary increments imply

$$
P_{0}(t+h)=P_{0}(t) P_{0}(h)=P_{0}(t)(1-\lambda h+o(h))
$$

so

$$
\frac{P_{0}(t+h)-P_{0}(t)}{h}=-\lambda P_{0}+\frac{o(h)}{h}
$$

and taking the limit as $h \rightarrow 0$, we get ${ }^{1}$

$$
P_{0}^{\prime}=-\lambda P_{0}
$$

The solution of this ode is $P_{0}(t)=C e^{-\lambda t}$, and since $P_{0}(0)=1$, we get $P_{0}(t)=$ $C e^{-\lambda t}$.

Now for $n \geq 1$, we have

$$
P_{n}(t+h)=P_{n}(t) P_{0}(h)+P_{n-1}(t) P_{1}(h)+o(h),
$$

which gives

$$
\frac{P_{n}(t+h)-P_{n}(t)}{h}=-\lambda P_{n}(t)+\lambda P_{n-1}(t)
$$

[^0]SO

$$
P_{n}^{\prime}=-\lambda P_{n}+\lambda P_{n-1} .
$$

The trick is to write this as

$$
\frac{d}{d t}\left(e^{\lambda t} P_{n}\right)=e^{\lambda t} \lambda P_{n-1} .
$$

With this formula in place, lets prove that $P_{n}(t)=e^{-\lambda t}(\lambda t)^{n} / n!$ by induction. We know this is true for $n=0$. Assuming its true for n, we have

$$
\frac{d}{d t}\left(e^{\lambda t} P_{n+1}(t)\right)=e^{\lambda t} \lambda e^{-\lambda t} \frac{(\lambda t)^{n}}{n!},
$$

or

$$
e^{\lambda t} P_{n+1}(t)=\frac{\lambda^{n+1} t^{n+1}}{(n+1)!}+C,
$$

or

$$
P_{n+1}(t)=e^{-\lambda t} \frac{\lambda^{n+1} t^{n+1}}{(n+1)!}+C e^{-\lambda t}
$$

and since $P_{n}(0)=0$, we get $C=0$. This completes the proof.
Poisson processes can also be characterized by their interarrival times. Let T_{k} be the time between the $k-1$ st and k th arrival. What is the distribution of the $T_{k} \mathrm{~s}$?

Clearly,

$$
P\left(T_{1}>t\right)=P(N(t)=0)=e^{-\lambda t}
$$

so T_{1} is exponentially distributed with parameter λ. Moving on,

$$
P\left(T_{2}>t \mid T_{1}=s\right)=P\left(N(s+t)-N(s)=0 \mid T_{1}=s\right),
$$

and now by independent increments, $N(s+t)-N(s)$ is independent of the event $T_{1}=s$, so

$$
P\left(T_{2}>t \mid T_{1}=s\right)=e^{-\lambda t},
$$

so T_{2} is also exponentially distributed with parameter λ and independent of T_{1}. Proceeding this way, we get that all of the T_{i} are iid exponentials with parameter λ.

3 Another definition of the Poisson process

Let S_{i} be the arrival times of a Poisson process, i.e.

$$
\begin{aligned}
S_{1} & =T_{1} \\
S_{2} & =T_{1}+T_{2} \\
S_{3} & =T_{1}+T_{2}+T_{3} \\
\vdots & \vdots
\end{aligned}
$$

Claim: Conditioned on $N(t)=n$, the distribution of S_{1}, \ldots, S_{n} is the same as the distribution of order statistics of $U[0, t]$ random variables.

Remark: This gives another view of the poisson process. We can fix time t, draw n from a poisson distribution with parameter λt, and then generate S_{1}, \ldots, S_{n} as order statistics of uniform random variables on $[0, t]$.

Proof: Suppose $t_{1}<t_{2}<\cdots<t_{n}$ are points in $(0, t)$. Pick h to be small enough so that $t_{i}+h<t_{i+1}$. Consider the the probability,

$$
P\left(S_{1} \in\left[t_{1}, t_{1}+h\right], S_{2} \in\left[t_{2}, t_{2}+h\right], \ldots, S_{n} \in\left[t_{n}, t_{n}+h\right], N(t)=n\right)
$$

This is the same as the probability of exactly one arrival in each interval $\left[t_{i}, t_{i}+\right.$ $h]$ and no arrivals elsewhere in $[0, t]$. So,

$$
\begin{aligned}
P\left(S_{1} \in\left[t_{1}, t_{1}+h\right], S_{2} \in\left[t_{2}, t_{2}+h\right], \ldots, S_{n} \in\left[t_{n}, t_{n}+h\right] \mid N(t)=n\right) & =\frac{\left(\lambda h e^{-\lambda h}\right)^{n} e^{-\lambda(t-n h)}}{e^{-\lambda t} \lambda^{n} t^{n} / n!} \\
& =\frac{n!}{t^{n}} h^{n}
\end{aligned}
$$

and this implies that the density of S_{1}, \ldots, S_{n} conditioned on $N(t)=n$ is $n!/ t^{n 2}$

[^1]MIT OpenCourseWare
http://ocw.mit.edu

6.436J / 15.085J Fundamentals of Probability

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

[^0]: ${ }^{1}$ It could be argued that we have only shown that the derivative from the right satisfies the ode above. However, one can repeat the same argument beginning with $P_{0}(t)=P_{0}(t-h) P_{0}(h)$, to get the same fact for the left derivative. We omit the details.

[^1]: ${ }^{2}$ If you would like to make the last step more precise, one can argue as foolows. Observe that we have two probability measures on $R^{n}: P_{1}(A)=P\left(\left(S_{1}, \ldots, S_{n}\right) \in A\right)$, and $P_{2}(A)=\int_{A} f$, where $f\left(x_{1}, \ldots, x_{n}\right)=n!/ t^{n}$ whenever $0<x_{1}<x_{2} \ldots<x_{n}<t$, and 0 elsewhere. We want to show that these two measures are the same everywhere. For simplicity, consider the case when $n=2$. Then, we have shown that these two measures are the same on rectangles of the form $[a, b] \times[c, d]$ where $b \leq c$. They must also be the same on rectangles of the form $[a, b] \times[c, d]$ when $a \geq d$ - the probability is 0 in both cases. Its not hard to see these two facts imply the two measures must be the same on all rectangles, and consequently on all Borel sets.

