MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Markov Chains

- Problem 19 from Poisson process exercises in [BT]
- Fact: If there is a single recurrent class, the frequency with which the edge $i \rightarrow j$ is traversed is $\pi_{i} p_{i j}$. This fact allows us to solve some problems easily.
- Consider a birth-death Markov chain. State space $1, \ldots, m$. If you are at state i, you go to $i+1$ with probability d_{i} and $i-1$ with probability b_{i}. The numbers b_{i}, d_{i} are given. You stay at i with probability $1-b_{i}-d_{i}$.
See problem 21 in Markov chain chapter of [BT] for a picture.
The edge $i \rightarrow i+1$ is traversed in the same proportion as the edge $i+1 \rightarrow$ i, so

$$
\pi_{i} b_{i}=\pi_{i+1} d_{i+1},
$$

or

$$
\pi_{i+1}=\pi_{i} \frac{b_{i}}{d_{i+1}}
$$

The above recursion allows one to write all the stationary probabilities in terms of π_{1} as

$$
\begin{gathered}
\pi_{2}=\pi_{1} \frac{b_{1}}{d_{2}} \\
\pi_{3}=\pi_{2} \frac{b_{2}}{d_{3}}=\pi_{1} \frac{b_{1} b_{2}}{d_{2} d_{3}},
\end{gathered}
$$

and finally

$$
\pi_{m}=\pi_{m-1} \frac{b_{m-1}}{d_{m}}=\pi_{1} \frac{b_{1} b_{2} \cdots b_{m-1}}{d_{2} d_{3} \cdots d_{m}} .
$$

Together with the equation

$$
\sum_{i} \pi_{i}=1,
$$

this completely determines π_{i}. For example, suppose $b_{i}=1 / 3, d_{i}=2 / 3$ for all i. Then,

$$
\pi_{i+1}=\frac{1}{2} \pi_{i},
$$

and so

$$
\pi_{1}\left(1+\frac{1}{2}+\frac{1}{2^{2}}+\cdots+\frac{1}{2^{m-1}}\right)=1,
$$

and lets assume m is very large, so that

$$
\pi_{1} \approx \frac{1}{2}
$$

and

$$
\begin{aligned}
& \pi_{2} \approx \frac{1}{4} \\
& \pi_{3} \approx \frac{1}{8}
\end{aligned}
$$

and so on.

- Random walk on a graph. A particle performs a random walk on the vertex set of a connected undirected graph G, which for simplicity we assume to have neither loops nor multiple edges. At each stage it moves to a neighbor of its current position, each such neighbor being chosen with equal probability. If G has $\eta<\infty$ edges, show that the stationary distribution is given by $\pi_{v}=d_{v} /(2 \eta)$, where d_{v} is the degree of each vertex v.
One way to do this problem is to simply check that the proposed solution satisfies the defining equations: $\pi P=\pi$, and $\sum_{v} \pi_{v}=1$ (we can see immediately that we have nonnegativity). We have:

$$
\begin{aligned}
\sum_{v} \pi_{v} & =\sum_{v} \frac{d_{v}}{2 \eta} \\
& =\frac{1}{2 \eta} \sum_{v} d_{v} \\
& =1,
\end{aligned}
$$

since the sum of the degrees is twice the number of edges (each edge increases the sum of the degrees by exactly 2). Similarly, we can show that $\pi P=\pi$. Let us define $\delta_{v u}$ to be 1 if vertices u and v are adjacent,
and 0 otherwise. Then, we have:

$$
\begin{aligned}
\sum_{v} \pi_{v} P_{v u} & =\frac{1}{2 \eta} \sum_{v} d_{v}\left(\frac{1}{d_{v}} \delta_{v u}\right) \\
& =\frac{1}{2 \eta} \sum_{v} \delta_{v u}
\end{aligned}
$$

But $\sum_{v} \delta_{v u}$ is the number of edges incident to node u, that is, $\sum_{v} \delta_{v u}=$ d_{u}. Therefore we have:

$$
\sum_{v} \pi_{v} P_{v u}=\frac{1}{2 \eta} d_{u}=\frac{d_{u}}{2 \eta}=\pi_{u} .
$$

This is what we wanted to show.
[Note: HW11-07; from [GS]]
Exercise 133. A particle performs a random walk on a bow tie $A B C D E$ drawn beneath, where C is the knot. From any vertex, its next step is equally likely to be to any neighbouring vertex. Initially it is at A. Find the expected value of:
(a) The time of first return to A.
(b) The number of visits to D before returning to A.
(c) The number of visits to C before returning to A.
(d) The time of first return to A, given that there were no visits to E before the return to A.
(e) The number of visits to D before returning to A, given that there were no visits to E before the return to A.

Figure 1: A simple example of the set operation we describe.

Solution: First, we can compute that the steady state distribution is $\pi_{A}=\pi_{B}=$ $\pi_{D}=\pi_{E}=1 / 6$, and $\pi_{C}=1 / 3$. We can do this either by solving a system of linear equations (as usual) or just use our result from the first problem above.
(a) By the result from class, and on the handout, we have: $t_{A}=1 / \pi_{A}=6$. Alternatively, we can solve the following system of equations (observe than t_{A} appears in only one equation):

$$
\begin{aligned}
t_{A} & =\frac{1}{2}\left(t_{B}+1\right)+\frac{1}{2}\left(t_{C}+1\right) \\
t_{B} & =\frac{1}{2}+\frac{1}{2}\left(t_{C}+1\right) \\
t_{C} & =\frac{1}{4}+\frac{1}{4}\left(t_{B}+1\right)+\frac{1}{4}\left(t_{D}+1\right)+\frac{1}{4}\left(t_{E}+1\right) \\
t_{D} & =\frac{1}{2}\left(t_{C}+1\right)+\frac{1}{2}\left(t_{E}+1\right) \\
t_{E} & =\frac{1}{2}\left(t_{C}+1\right)+\frac{1}{2}\left(t_{D}+1\right) .
\end{aligned}
$$

(b) By the result from the handout on Markov Chains, we know that

$$
\pi_{D}=\frac{\mathbb{E}[\# \text { transitions to } D \text { in a cycle that starts and ends at } A]}{\mathbb{E}[\# \text { transitions in a cycle that starts and ends at } A]},
$$

from which we find that the quantity we wish to compute is $6 \pi_{D}=1$.
(c) Using the same method as in part (b), we find the answer to be $6 \pi_{C}=2$.
(d) We let $\mathbb{P}_{i}(\cdot)=\mathbb{P}\left(\cdot \mid X_{0}=i\right)$, and let T_{j} be the time of the first passage to state j, and let $\nu_{i}=\mathbb{P}_{i}\left(T_{A}<T_{E}\right)$. Then, as we obtained the equations above, that is, by conditioning on the first step, we have

$$
\begin{aligned}
\nu_{A} & =\frac{1}{2} \nu_{B}+\frac{1}{2} \nu_{C} \\
\nu_{B} & =\frac{1}{2}+\frac{1}{2} \nu_{C} \\
\nu_{C} & =\frac{1}{4}+\frac{1}{4} \nu_{B}+\frac{1}{4} \nu_{D} \\
\nu_{D} & =\frac{1}{2} \nu_{C} .
\end{aligned}
$$

Solving these, we find: $\nu_{A}=5 / 8, \nu_{B}=3 / 4, \nu_{C}=1 / 2, \nu_{D}=1 / 4$. Now we can compute the conditional transition probabilities, which we call $\tau_{i j}$. We have:

$$
\begin{aligned}
\tau_{A B} & =\mathbb{P}_{A}\left(X_{1}=B \mid T_{A}<T_{E}\right) \\
& =\frac{\mathbb{P}_{A}\left(X_{1}=B\right) P_{B}\left(T_{A}<T_{E}\right)}{\mathbb{P}_{A}\left(T_{A}<T_{E}\right)} \\
& =\frac{\nu_{B}}{2 \nu_{A}}=\frac{3}{5} .
\end{aligned}
$$

Similarly, we find: $\tau_{A C}=2 / 5, \tau_{B A}=2 / 3, \tau_{B C}=1 / 3, \tau_{C A}=1 / 2, \tau_{C B}=$ $3 / 8, \tau_{C D}=1 / 8, \tau_{D C}=1$. Now we have essentially reduced to a problem like part (a). We can compute the conditional expectation by solving a system of linear equations using the new transition probabilities:

$$
\begin{aligned}
& \tilde{t}_{A}=1+\frac{3}{5} \tilde{t}_{B}+\frac{2}{5} \tilde{t}_{C} \\
& \tilde{t}_{B}=1+\frac{2}{3}(1)+\frac{1}{3} \tilde{t}_{C} \\
& \tilde{t}_{C}=1+\frac{1}{2}(1)+\frac{3}{8} \tilde{t}_{B}+\frac{1}{8} \tilde{t}_{D} \\
& \tilde{t}_{D}=1+\tilde{t}_{C} .
\end{aligned}
$$

Solving these equations, yields $\tilde{t}_{A}=14 / 5$.
(e) We can use the conditional transition probabilities above, to reduce to a problem essentially like that in part (b). Let N be the number of visits to D. Then, denoting by η_{i} the expected value of N given that we start at i, and that $T_{A}<T_{E}$, we have the equations:

$$
\begin{aligned}
\eta_{A} & =\frac{3}{5} \eta_{B}+\frac{2}{5} \eta_{B} \\
\eta_{B} & =0+\frac{1}{3} \eta_{C} \\
\eta_{C} & =0+\frac{3}{8} \eta_{B}+\frac{1}{8}\left(1+\eta_{D}\right) \\
\eta_{D} & =\eta_{C} .
\end{aligned}
$$

Solving, we obtain: $\eta_{A}=1 / 10$.

MIT OpenCourseWare
http://ocw.mit.edu

6.436J / 15.085J Fundamentals of Probability

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

