6.436J/15.085J	Fall 2008
Recitation 13	10/31/2008

Markov Chains

- Problem 19 from Poisson process exercises in [BT]
- Fact: If there is a single recurrent class, the frequency with which the edge $i \rightarrow j$ is traversed is $\pi_i p_{ij}$. This fact allows us to solve some problems easily.
- Consider a birth-death Markov chain. State space 1,..., m. If you are at state i, you go to i + 1 with probability d_i and i − 1 with probability b_i. The numbers b_i, d_i are given. You stay at i with probability 1 − b_i − d_i.

See problem 21 in Markov chain chapter of [BT] for a picture.

The edge $i \rightarrow i+1$ is traversed in the same proportion as the edge $i+1 \rightarrow i$, so

$$\pi_i b_i = \pi_{i+1} d_{i+1},$$

or

$$\pi_{i+1} = \pi_i \frac{b_i}{d_{i+1}}.$$

The above recursion allows one to write all the stationary probabilities in terms of π_1 as

$$\pi_2 = \pi_1 \frac{b_1}{d_2},$$
$$\pi_3 = \pi_2 \frac{b_2}{d_3} = \pi_1 \frac{b_1 b_2}{d_2 d_3},$$

and finally

$$\pi_m = \pi_{m-1} \frac{b_{m-1}}{d_m} = \pi_1 \frac{b_1 b_2 \cdots b_{m-1}}{d_2 d_3 \cdots d_m}.$$

Together with the equation

$$\sum_{i} \pi_i = 1,$$

this completely determines π_i . For example, suppose $b_i = 1/3, d_i = 2/3$ for all *i*. Then,

$$\pi_{i+1} = \frac{1}{2}\pi_i,$$

and so

$$\pi_1(1 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^{m-1}}) = 1,$$

 $\pi_1 \approx \frac{1}{2},$

and lets assume m is very large, so that

and

$$\pi_2 \approx \frac{1}{4},$$
$$\pi_3 \approx \frac{1}{8},$$

and so on.

Random walk on a graph. A particle performs a random walk on the vertex set of a connected undirected graph G, which for simplicity we assume to have neither loops nor multiple edges. At each stage it moves to a neighbor of its current position, each such neighbor being chosen with equal probability. If G has η < ∞ edges, show that the stationary distribution is given by π_v = d_v/(2η), where d_v is the degree of each vertex v.

One way to do this problem is to simply check that the proposed solution satisfies the defining equations: $\pi P = \pi$, and $\sum_{v} \pi_{v} = 1$ (we can see immediately that we have nonnegativity). We have:

$$\sum_{v} \pi_{v} = \sum_{v} \frac{d_{v}}{2\eta}$$
$$= \frac{1}{2\eta} \sum_{v} d_{v}$$
$$= 1,$$

since the sum of the degrees is twice the number of edges (each edge increases the sum of the degrees by exactly 2). Similarly, we can show that $\pi P = \pi$. Let us define δ_{vu} to be 1 if vertices u and v are adjacent,

and 0 otherwise. Then, we have:

$$\sum_{v} \pi_{v} P_{vu} = \frac{1}{2\eta} \sum_{v} d_{v} \left(\frac{1}{d_{v}} \delta_{vu} \right)$$
$$= \frac{1}{2\eta} \sum_{v} \delta_{vu}.$$

But $\sum_{v} \delta_{vu}$ is the number of edges incident to node u, that is, $\sum_{v} \delta_{vu} = d_u$. Therefore we have:

$$\sum_{v} \pi_v P_{vu} = \frac{1}{2\eta} d_u = \frac{d_u}{2\eta} = \pi_u.$$

This is what we wanted to show.

[Note: HW11-07; from [GS]]

Exercise 133. A particle performs a random walk on a bow tie ABCDE drawn beneath, where C is the knot. From any vertex, its next step is equally likely to be to any neighbouring vertex. Initially it is at A. Find the expected value of:

- (a) The time of first return to A.
- (b) The number of visits to D before returning to A.
- (c) The number of visits to C before returning to A.
- (d) The time of first return to A, given that there were no visits to E before the return to A.
- (e) The number of visits to D before returning to A, given that there were no visits to E before the return to A.

Figure 1: A simple example of the set operation we describe.

Solution: First, we can compute that the steady state distribution is $\pi_A = \pi_B = \pi_D = \pi_E = 1/6$, and $\pi_C = 1/3$. We can do this either by solving a system of linear equations (as usual) or just use our result from the first problem above.

(a) By the result from class, and on the handout, we have: $t_A = 1/\pi_A = 6$. Alternatively, we can solve the following system of equations (observe than t_A appears in only one equation):

$$t_A = \frac{1}{2}(t_B + 1) + \frac{1}{2}(t_C + 1)$$

$$t_B = \frac{1}{2} + \frac{1}{2}(t_C + 1)$$

$$t_C = \frac{1}{4} + \frac{1}{4}(t_B + 1) + \frac{1}{4}(t_D + 1) + \frac{1}{4}(t_E + 1)$$

$$t_D = \frac{1}{2}(t_C + 1) + \frac{1}{2}(t_E + 1)$$

$$t_E = \frac{1}{2}(t_C + 1) + \frac{1}{2}(t_D + 1).$$

(b) By the result from the handout on Markov Chains, we know that

$$\pi_D = \frac{\mathbb{E}[\# \text{ transitions to } D \text{ in a cycle that starts and ends at } A]}{\mathbb{E}[\# \text{ transitions in a cycle that starts and ends at } A]},$$

from which we find that the quantity we wish to compute is $6\pi_D = 1$.

- (c) Using the same method as in part (b), we find the answer to be $6\pi_C = 2$.
- (d) We let $\mathbb{P}_i(\cdot) = \mathbb{P}(\cdot|X_0 = i)$, and let T_j be the time of the first passage to state j, and let $\nu_i = \mathbb{P}_i(T_A < T_E)$. Then, as we obtained the equations above, that is, by conditioning on the first step, we have

$$\begin{split} \nu_A &= \frac{1}{2}\nu_B + \frac{1}{2}\nu_C \\ \nu_B &= \frac{1}{2} + \frac{1}{2}\nu_C \\ \nu_C &= \frac{1}{4} + \frac{1}{4}\nu_B + \frac{1}{4}\nu_D \\ \nu_D &= \frac{1}{2}\nu_C. \end{split}$$

Solving these, we find: $\nu_A = 5/8$, $\nu_B = 3/4$, $\nu_C = 1/2$, $\nu_D = 1/4$. Now we can compute the conditional transition probabilities, which we call τ_{ij} . We have:

$$\tau_{AB} = \mathbb{P}_A(X_1 = B | T_A < T_E)$$
$$= \frac{\mathbb{P}_A(X_1 = B) P_B(T_A < T_E)}{\mathbb{P}_A(T_A < T_E)}$$
$$= \frac{\nu_B}{2\nu_A} = \frac{3}{5}.$$

Similarly, we find: $\tau_{AC} = 2/5$, $\tau_{BA} = 2/3$, $\tau_{BC} = 1/3$, $\tau_{CA} = 1/2$, $\tau_{CB} = 3/8$, $\tau_{CD} = 1/8$, $\tau_{DC} = 1$. Now we have essentially reduced to a problem like part (a). We can compute the conditional expectation by solving a system of linear equations using the new transition probabilities:

$$\begin{split} \tilde{t}_A &= 1 + \frac{3}{5} \tilde{t}_B + \frac{2}{5} \tilde{t}_C \\ \tilde{t}_B &= 1 + \frac{2}{3} (1) + \frac{1}{3} \tilde{t}_C \\ \tilde{t}_C &= 1 + \frac{1}{2} (1) + \frac{3}{8} \tilde{t}_B + \frac{1}{8} \tilde{t}_D \\ \tilde{t}_D &= 1 + \tilde{t}_C. \end{split}$$

Solving these equations, yields $\tilde{t}_A = 14/5$.

(e) We can use the conditional transition probabilities above, to reduce to a problem essentially like that in part (b). Let N be the number of visits to D. Then, denoting by η_i the expected value of N given that we start at i, and that $T_A < T_E$, we have the equations:

$$\begin{split} \eta_A &= \frac{3}{5}\eta_B + \frac{2}{5}\eta_B \\ \eta_B &= 0 + \frac{1}{3}\eta_C \\ \eta_C &= 0 + \frac{3}{8}\eta_B + \frac{1}{8}(1 + \eta_D) \\ \eta_D &= \eta_C. \end{split}$$

Solving, we obtain: $\eta_A = 1/10$.

6.436J / 15.085J Fundamentals of Probability Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.