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Problem 3.1 
Let x1, x2, . . . , xn denote a collection of jointly Gaussian random variables with 
information matrix J. (Assume that x1, x2, . . . , xn are nondegenerate, i.e., the covariance 
matrix is invertible so that J is well-defined.) J naturally induces a graph, namely the 
undirected graph formed by including edges between only those pairs of variables xi, xj for 
which Ji,j  is Markov = 0. By the Hammersley-Clifford Theorem, we know that px1,x2,...,xn 

with respect to this graph. 
Recall from lecture that given a distribution px , an undirected graph G is said to be a 
perfect map for px if px is Markov with respect to G, and px does not satisfy any 
conditional independence statements that G does not imply. 

(a) For this part only, assume that J1,2 = 0 and that n = 5. 

TRUE or FALSE? Under the previous assumptions, x1 and x2 are independent
 
conditioned on x3, x4.
 

If TRUE, provide a proof. If FALSE, provide a counterexample.
 

(b) Construct an example matrix J such that the associated graph is not a perfect map 
for px1,x2,...,xn (you are free to choose whatever value of n you want). Your answer 
should include a proof that your construction works. 

(c) (Practice) Prove that if the graph that we obtain from J is a tree, then this tree is 
always a perfect map for px1,x2,...,xn .
 

Hint: Show that if J is a tree, then the matrix Λ = J−1 cannot have any zero
 
entries. Then, use this property to prove the claim. Note that the two steps
 
suggested in the hint are completely independent of each other.
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Problem 3.2 (Practice)
 

Let x = [x1, x2, . . . , xn]T denote a collection of jointly Gaussian random variables with 
information matrix J = [Jij ]. Recall that we can form the corresponding undirected 
graphical model by including edges between only those pairs of variables xi, xj for which 
Jij = 0. 
In this problem, we consider a graph induced by the sparsity pattern of the covariance 
matrix Λ = [Λij ]. That is, we form an undirected graph by including edges between only 
those pairs of variables xi, xj for which Λij = 0. The edges are drawn in dashed lines, and 
this graph is called a covariance graph. 
Consider the following covariance graph: 

x1 x2 x3 x4

(a) List all conditional and unconditional independencies implied by the covariance
 
graph.
 

(b) Draw a four-node undirected graphical model that is a minimal I-map of the
 
covariance graph.
 

For the remainder of the problem, you may find useful the following results on an 
T Tarbitrary random vector y partitioned into two subvectors y1 and y2 (i.e., y = [y1 , y2 ]

T), 
with information matrix and covariance matrix 

J11 J12 Λ11 Λ12 

J21 J22 
, 

Λ21 Λ22 
. 

Specifically, the conditional distribution py1|y2 (y1|y2) has information matrix J11 and 
covariance matrix Λ11 − Λ12Λ

−1 The marginal distribution py1 (y1) has information 22 Λ21. 
matrix J11 − J12J

−1J21 and covariance matrix Λ11.22 
Consider the following covariance graph: 

x1 x5 x2

x3 x6 x4

(c) Draw a covariance graph with the fewest possible (dashed) edges for px1,x2,x3,x4 . 

(d) Draw a covariance graph with the fewest possible (dashed) edges for px1,x2,x3,x4|x5,x6 . 

Problem 3.3 
T TConsider a random vector x made up of two subvectors x1 and x2 (i.e., x = [x1 , x2 ]

T), 
with information matrix and state 
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J11 J12 h1 , (1)
J21 J22 h2 

(where, of course, J11 and J22 are symmetric, and J21 = JT = 0, then the joint 12). If J12 

distribution for x1 and x2 factors and we easily see that x1 and x2 are independent and 
that we can directly read off the marginal distribution for either of them. For example, in 
this case the information parameters for x1 are simply J11 and h1 (i.e., 
x1 ∼ N −1(h1, J11)). However, if J12 = 0, then there is some work to be done to determine 
the information parameters for the marginal distribution for x1. Very importantly, and as 
you’ll show in this problem, finding those information parameters is very closely related to 
computations that are likely familiar to you but from a very different context (namely 
solving simultaneous equations). Specifically, we obtain these information parameters by 
Gaussian elimination. 

x1 ∼ N −1(ha, Ja) 

Ja = J11 − J12J
−1J21 , ha = h1 − J12J

−1h2 (2)22 22 

The operation involved in computing Ja is often referred to as the Schur complement 
formula, an operation that is central to Gaussian elimination. Now, we’ll get at this 
answer in two different ways. 

(a) Since J12 = 0, we can’t write the joint density as a product of the density for x1 and 
that for x2. However, if we can perform an invertible linear transformation into a 
new set of variables, in which we keep the components of x1 unchanged, maybe we 
can expose that marginal density. That is, suppose we consider linear 
transformations of the form 

x1 I 0 x1 x1 = = 
z A I x2 x2 + Ax1 

Intuitively, what we would like to do is to subtract from x2 just enough of x1 to leave 
the difference uncorrelated with x1 (and hence independent by joint Gaussianity). 
Show that the right choice of A is J−1J21, that with this choice x1 and z are22 
independent, and that the marginal distribution for x1 is as indicated above in 
eq. (2). 

−1 
I 0 I 0 

Hint: = 
A I −A I 

(b) The information parameterization only implicitly specifies the mean of a Gaussian 
vector — i.e., we need to solve the equation Jm = h to determine the mean. 

T TConsider again the case in which x = [x1 , x2 ]
T has information parameterization as 

given in (1), and let m1, and m2 denote the means of x1, and x2, respectively. Set up 
the equations to be solved for these means from the information parameterization, 
eliminate m2, and show that what you are left with are precisely the equations 

Jam1 = ha . 
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(c) As should be clear from this Gaussian elimination interpretation, in more complex
 
situations — when x is composed of more than two component subvectors, we can, 
in principle perform Gaussian elimination in any order we like. For example, if x 
consists of three subvectors x1, x2 and x3, we can equivalently eliminate x3 first 
(obtaining the joint marginal for x1, and x2) and then eliminate x2, or we can 
eliminate x2 and x3 in the opposite order, or we can eliminate x2 and x3 

simultaneously (viewing them together as a single, larger subvector). One case in 
which things are particularly simple is the case in which there is very special and 
important structure in the interdependencies of these three subvectors. Specifically, 

T T Tsuppose that the information parameterization of [x1 , x2 , x3 ]
T has the following 

form: ⎛ ⎞ ⎛ ⎞ 
J11 J12 J13 h1 ⎝ ⎠ ⎝ ⎠J = J21 J22 0 , h = h2 

J31 0 J33 h3 

(i) Show that x2 and x3 are conditionally independent given x1 (refer to Problem 
1.2 (b)). 

(ii) Show that the marginal distribution for x1 has additive form, in that the
 
influences of x2 and x3 individually on x1 (as in eq. (2)) are simply added
 
together to get their combined influence. That is,
 

x1 ∼ N −1(hb, Jb) 

Jb = J11 − (J12J
−1J21 + J13J

−1J31)22 33 

hb = h1 − (J12J
−1h2 + J13J

−1h3)22 33 
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Problem 3.4 
Consider the directed graph shown in the following figure. 

31 5 7

42 6 8

(a) What is the corresponding moral graph? 

(b) What is the reconstituted graph that results from invoking the 
UndirectedGraphEliminate algorithm (see Jordan Ch. 3) on the moral graph 
with the ordering (8, 7, 6, 5, 4, 3, 2, 1)? 

(c) What is the reconstituted graph that results from invoking the
 
UndirectedGraphEliminate algorithm on the moral graph with the ordering
 
(8, 5, 6, 7, 4, 3, 2, 1)?
 

(d) Suppose you wish to use the Eliminate algorithm to calculate px1|x8 (x1|x8). 
(Suppose that each xi is binary and that the local conditionals do not exhibit any 
special symmetries.) What elimination ordering is optimal? Why? 

Problem 3.5 (Practice) 

In this problem, we consider the elimination algorithm for inference and its computational 
complexity. 

(a) Consider the following graph on 8 nodes. 

x1 x2 x3 x4

y1 y2 y3 y4

Draw the reconstituted graph induced by the elimination ordering 

(x4, y4, y3, x3, x1, x2, y2, y1). 

(b) Now consider a graph on 2n nodes as drawn in the following figure, in which every 
random variable takes on values from a finite alphabet of size k. (That is, 
∀i ∈ {1, . . . , n}, xi ∈ X , yi ∈ Y and |X | = |Y| = k.) 
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x1 x2 x3

y1 y2 y3

...

...

xn

yn

Describe an elimination ordering that requires the least computation and one that 
requires the most computation. Determine the asymptotic time complexity of the 
algorithm for each of these orderings with respect to k and n. 

(c) Give an example of an undirected graph on n nodes such that the maximal clique 
size is constant with respect to n (i.e., the maximal clique size does not depend on 
n), but where the computation time required to perform elimination with any 
ordering is proportional to kαn, where k is the size of the alphabet. Specify the value 
of α for your example. Note that depending on the elimination ordering, your graph 
may have different values of α. However, your graph should be such that α is 
lower-bounded by some positive constant across all elimination orderings. 

Problem 3.6 
Consider the following undirected graphical model over N discrete random variables: 

...

x1

x2

x3

x4

x5

x6

x7

x8

xN

xN−1

N−2x

We define clique potentials ψi,i+1,i+2(xi, xi+1, xi+2) for each triplet of random variables 
(xi, xi+1, xi+2) for i ∈ {1, . . . , N − 2}. 

(a) We run the elimination algorithm on this graph with the ordering (x1, x2, . . . , xN ). 
Give the list of active potentials just before eliminating node i. 

Recall that the list of active potentials contains all potentials (including
 
intermediate computations) which have not yet been processed.
 

(b) In a message-passing scheme for marginalization on this graph, each node
 
i ∈ {1, . . . , N − 1} sends a forward message τi as follows:
  

τ1(x2, x3) = fa(ψ1,2,3(x1, x2, x3)), 
x1 

τi(xi+1, xi+2) = fb(τi−1(xi, xi+1) , ψi,i+1,i+2(xi, xi+1, xi+2)), i ∈ {2, . . . , N − 2}, 
xi 

τN−1(xN ) = fc(τN−2(xN−1, xN )). 
xN −1 

Determine functions fa, fb, and fc so that pxn (xN ) ∝ τN−1(xN ). 
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(c) Each node i ∈ {N, N − 1, . . . , 2} also sends a backward message ηi as follows: 

ηN (xN−1, xN−2) = ga(ψN−2,N−1,N (xN−2, xN−1, xN )),
 
xN
 

ηi(xi−1, xi−2) = gb(ηi+1(xi, xi−1) , ψi−2,i−1,i(xi−2, xi−1, xi)), i ∈ {N − 1, . . . , 3}, 
xi 

η2(x1) = gc(η3(x2, x1)). 
x2 

Determine functions ga, gb, and gc so that px1 (x1) ∝ η2(x1). 

(d) We compute the remaining marginal distributions from these messages as follows: 

px2 ∝ ha(τ1 , η3 , η4), 

pxi ∝ hb(τi−2 , τi−1 , ηi+1 , ηi+2), i ∈ {3, . . . , N − 2}, 
pxN −1 ∝ hc(τN−3 , τN−2 , ηN ). 

Determine functions ha, hb, and hc. 

(e) Express, in O(·) notation, the minimal complexity of obtaining all singleton
 
marginals via the algorithm we designed in parts (b)-(d). Express your answer in
 
terms of the number of variables N and the alphabet size k. Assume that all N
 
variables are defined over the same alphabet.
 

Problem 3.7 (Practice) 
Let wi = (xi, yi), for i ∈ {1, 2, 3} be a collection of random variables. In this problem, we 

use the notation a↔b↔c to indicate that a, b, c form a Markov chain. 

(a) The relation w1↔w2↔w3 does not imply both x1↔x2↔x3 and y1↔y2↔y3. Show this
 
by constructing an example in the form of a fully labeled undirected graph.
 

(b) The relations x1↔x2↔x3 and y1↔y2↔y3 together do not imply w1↔w2↔w3. Show
 
this by constructing an example in the form of a fully labeled undirected graph.
 

For parts (c) and (d) below, we also require that x1 ⊥⊥ y1. 

(c) Does the statement in part (a) continue to hold? If so, provide a fully labeled
 
undirected graph as an example; if not, explain why not.
 

(d) Does the statement in part (b) continue to hold? If so, provide a fully labeled
 
undirected graph as an example; if not, explain why not.
 

Problem 3.8 (Practice) 
This problem illustrates some limitations of graphical models in revealing probabilistic 
relationships among even three random variables. 
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(a) Let x ↔ y ↔ z form a Markov chain such that x and z are independent. Show by 
example that each of the following is true: 

(i) z need not be independent of y 

(ii) x need not be independent of y 

(iii) z need not be independent of (x , y) 

(iv) x need not be independent of (y , z) 

(b) Suppose x ,y ,z are are collection of random variables such that x and y are 
independent, and x and z are independent. 

(i) Show by example that x need not be independent of (y , z) 

(ii) Prove that if x ↔ y ↔ z also form a Markov chain, then x is independent of 
(y , z). 
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