6.441 Transmission of Information Problem Set 2

Spring 2010
Due date: February 23

Problem 1 Two semi-working street lamps turn on and off independently as follows: within each one-minute interval, a lamp that is on turns off with probability p, and a lamp that is off turns on with probability p. At time $t=0,1,2 \ldots$ minutes, an observer records the number N_{t} of street lamps that are on, as well as the change $D_{t}=N_{t}-N_{t-1}$ from the previous recorded number.
(a) Do N_{0}, N_{1}, \ldots form a Markov process? What is the entropy rate of this sequence?
(b) Do D_{0}, D_{1}, \ldots form a Markov process? What is the entropy rate of this sequence?

Problem 2 Problem 3.6 in Cover and Thomas (first edition), or 3.10 in Cover and Thomas (second edition).

Problem 3 Consider a sequence of IID binary r.v.s A_{0}, A_{1}, \ldots such that $A_{i}=0$ with probability ξ and $A_{i}=1$ with probability $1-\xi$ for some $0<\xi<1$. Consider another sequence of IID quaternary r.v.s Ξ_{0}, Ξ_{1}, \ldots such that $\Xi_{i}=0$ with probability $\frac{1-\theta}{3}, \Xi_{i}=1$ with probability $\frac{1-\theta}{3}, \Xi_{i}=2$ with probability $\frac{1-\theta}{3}, \Xi_{i}=3$ with probability θ for some $0<\theta<1$. The Ξ_{i} s and the A_{i} s are all mutually independent. Consider a sequence of quaternary r.v.s Z_{0}, Z_{1}, \ldots such that $\forall i>0$

$$
Z_{i}=A_{i}\left(\Xi_{i-1} \oplus Z_{i-1}\right) \oplus \overline{A_{i}} \Xi_{i-1}
$$

and Z_{0}, Ξ_{0} are IID, where \oplus denotes addition $\bmod 4$.
a) What is $H\left(Z_{i} \mid Z_{i-1}\right)$?
b) What is $H\left(Z_{i} \mid Z_{i-j}\right)$?
c) Can you find some form of the AEP that holds for the r.v.s Z_{0}, Z_{1}, \ldots ?

Problem 4 Problem 4.1 in Cover and Thomas (first or second edition).

MIT OpenCourseWare
http://ocw.mit.edu

6.441 Information Theory

Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

