6.441 Transmission of Information Problem Set 2

Spring 2010 Due date: February 23

Problem 1 Two semi-working street lamps turn on and off independently as follows: within each one-minute interval, a lamp that is on turns off with probability p, and a lamp that is off turns on with probability p. At time t = 0, 1, 2... minutes, an observer records the number N_t of street lamps that are on, as well as the change $D_t = N_t - N_{t-1}$ from the previous recorded number.

(a) Do N_0, N_1, \ldots form a Markov process? What is the entropy rate of this sequence?

(b) Do D_0, D_1, \ldots form a Markov process? What is the entropy rate of this sequence?

Problem 2 Problem 3.6 in Cover and Thomas (first edition), or 3.10 in Cover and Thomas (second edition).

Problem 3 Consider a sequence of IID binary r.v.s A_0, A_1, \ldots such that $A_i = 0$ with probability ξ and $A_i = 1$ with probability $1 - \xi$ for some $0 < \xi < 1$. Consider another sequence of IID quaternary r.v.s Ξ_0, Ξ_1, \ldots such that $\Xi_i = 0$ with probability $\frac{1-\theta}{3}, \Xi_i = 1$ with probability $\frac{1-\theta}{3}, \Xi_i = 2$ with probability $\frac{1-\theta}{3}, \Xi_i = 3$ with probability θ for some $0 < \theta < 1$. The Ξ_i s and the A_i s are all mutually independent. Consider a sequence of quaternary r.v.s Z_0, Z_1, \ldots such that $\forall i > 0$

$$Z_i = A_i(\Xi_{i-1} \oplus Z_{i-1}) \oplus \overline{A_i}\Xi_{i-1}$$

and Z_0 , Ξ_0 are IID, where \oplus denotes addition mod 4.

- a) What is $H(Z_i|Z_{i-1})$?
- b) What is $H(Z_i|Z_{i-j})$?
- c) Can you find some form of the AEP that holds for the r.v.s Z_0, Z_1, \ldots ?

Problem 4 Problem 4.1 in Cover and Thomas (first or second edition).

6.441 Information Theory Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.