
LECTURE 1


Introduction


2 Handouts


Lecture outline


Goals and mechanics of the class • 

notation • 

entropy: definitions and properties • 

mutual information: definitions and prop• 

erties 

Reading: Ch. 1, Scts. 2.1-2.5. 



Goals


Our goals in this class are to establish an 
understanding of the intrinsic properties of 
transmission of information and the rela
tion between coding and the fundamental 
limits of information transmission in the 
context of communications 

Our class is not a comprehensive introduc
tion to the field of information theory and 
will not touch in a significant manner on 
such important topics as data compression 
and complexity, which belong in a source-
coding class 

Notation


–	 random variable (r.v.) : X 

–	 sample value of a random variable : x


–	 set of possible sample values x of the

r.v. X : X 

–	 Probability mass function (PMF) of a 
discrete r.v. X : PX(x) 

–	 Probability density function (pdf) of a 
continuous r.v. : pX(x) 



Entropy


Entropy is a measure of the average un• 

certainty associated with a random vari

able 

The entropy of a discrete r.v. X is H(X) =
• 

PX(x)log2 (PX(x))
− 
�

x∈X


entropy is always non-negative • 

Joint entropy: the entropy of two dis• 

crete r.v.s X, Y with joint PMF PX,Y (x, y) 

is: 

H(X, Y ) = − 
�

x∈X ,y∈Y PX,Y (x, y)log2 

�
PX,Y (x, y)

� 

Conditional entropy: expected value of • 

entropies calculated according to condi

tional distributions H(Y X) = EZ[H(Y X =| |
Z)] for r.v. Z independent of X and


identically distributed with X. Intuitively,


this is the average of the entropy of Y


given X over all possible values of X.




Conditional entropy: chain rule 

H(Y X) = EZ[H(Y X = Z)] 

= − 
�|

PX(x) 
� 

PY |
|
X(y|x)log2[PY |X(y|x)] 

x∈X y∈Y 

= − 
� 

PX,Y (x, y) log2[PY |X(y|x)] 
x∈X ,y∈Y 

Compare with joint entropy: 

H(X, Y ) 

= − 
� 

PX,Y (x, y) log2[PX,Y (x, y)] 
x∈X ,y∈Y 

= − 
� 

PX,Y (x, y) log2[PY |X(y|x)PX(x)] 
x∈X ,y∈Y


= − 
� 

PX,Y (x, y) log2[PY |X(y|x)]

x∈X ,y∈Y


− 
� 

PX,Y (x, y) log2[PX(x)]

x∈X ,y∈Y


= H(Y X) + H(X)
|
This is the Chain Rule for entropy: 

H(X1, . . . , Xn) = 
�n

i=1 H(Xi|X1 . . . Xi−1). Ques
tion: H(Y X) = H(X Y )?| |



Relative entropy


Relative entropy is a measure of the dis

tance between two distributions, also known 

as the Kullback Leibler distance between 

PMFs PX(x) and PY (y). 

Definition: 

D(PX ||PY ) = 
�

x∈X PX(x) log 
�

PX (x)
� 

PY (x) 

in effect we are considering the log to be a


r.v. of which we take the mean (note that 

we assume 0 log(0) = 0 and p log(p ) = ∞p 0



Mutual information


Mutual Information: let X, Y be r.v.s with 
joint PMF PX,Y (x, y) and marginal PMFs 
PX(x) and PY (y) 

Definition: 

I(X; Y ) � 
PX,Y (x, y) 

� 

= 
� 

PX,Y (x, y) log 
PX(x)PY (y)x∈X ,y∈Y


= D 
�
PX,Y (x, y)||PX(x)PY (y)

�


intuitively: measure of how dependent the

r.v.s are 

Useful expression for mutual information:


I(X; Y ) = H(X) + H(Y ) − H(X, Y ) 

= X)
H(Y ) − H(Y |

= Y )
H(X) − H(X|

= I(Y ; X) 

Question: what is I(X; X)?




� 

Mutual information chain rule


Conditional mutual information: I(X; Y Z) =
|
H(X|Z) − H(X|Y, Z) 

I(X1, . . . , Xn; Y ) 

= H(X1, . . . , Xn) − H(X1, . . . , Xn|Y ) 

= H
n
(X1, . . . , Xn) − H(X1, . . . , Xn|Y ) 

=
 H(Xi|X1 . . . Xi−1)

i=1


n�

− 

n�


H(Xi|X1 . . . Xi−1, Y )

i=1


=
 I(Xi; Y |X1 . . . Xi−1)

i=1 

Look at 3 r.v.s: I(X1, X2; Y ) = I(X1; Y ) +


I(X2; Y X1) where I(X2; Y X1) is the extra | |
information about Y given by X2, but not 

given by X1 



MIT OpenCourseWare
http://ocw.mit.edu 

6.441 Information Theory 
Spring 2010 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms

