LECTURE 2

Convexity and related notions

Last time:

- Goals and mechanics of the class
- notation
- entropy: definitions and properties
- mutual information: definitions and properties

Lecture outline

- Convexity and concavity
- Jensen's inequality
- Positivity of mutual information
- Data processing theorem
- Fano's inequality

Reading: Scts. 2.6-2.8, 2.11.

Convexity

Definition: a function $f(x)$ is convex over (a, b) iff $\forall x_{1}, x_{2} \in(a, b)$ and $0 \leq \lambda \leq 1$
$f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \leq \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right)$
and is strictly convex iff equality holds iff $\lambda=0$ or $\lambda=1$.
f is concave iff $-f$ is convex.

Convenient test: if f has a second derivative that is non-negative (positive) everywhere, then f is convex (strictly convex)

Jensen's inequality

if f is a convex function and X is a r.v., then
$E_{X}[f(X)] \geq f\left(E_{X}[X]\right)$
if f is strictly convex, then $E_{X}[f(X)]=$ $f\left(E_{X}[X]\right) \Rightarrow X=E[X]$.

Concavity of entropy

Let $f(x)=-x \log (x)$ then

$$
\begin{aligned}
f^{\prime}(x) & =-x \log (e) \frac{1}{x}-\log (x) \\
& =-\log (x)-\log (e)
\end{aligned}
$$

and

$$
f^{\prime \prime}(x)=-\log (e) \frac{1}{x}<0
$$

for $x>0$.
$H(X)=\sum_{x \in|\mathcal{X}|} f\left(P_{X}(x)\right)$
thus the entropy of X is concave in the value of $P_{X}(x)$ for every x.

Thus, consider two random variables, X_{1} and X_{2} with common \mathcal{X}. Then the random variable X defined over the same \mathcal{X} such that $P_{X}(x)=\lambda P_{X_{1}}(x)+(1-\lambda) P_{X_{2}}(x)$ satisfies:

$$
H(X) \geq \lambda H\left(X_{1}\right)+(1-\lambda) H\left(X_{2}\right)
$$

Maximum entropy

Consider any random variable X_{1}^{1} on \mathcal{X}. For simplicity, consider $\mathcal{X}=\{1, \ldots,|\mathcal{X}|\}$ (we just want to use the elements of \mathcal{X} as indices). Now consider X_{2}^{1} a random variable such $P_{X_{2}^{1}}(x)=P_{X_{1}^{1}}(\operatorname{shift}(x))$ where shift denotes the cyclic shift on $(1, \ldots, \mathcal{X})$. Clearly $H\left(X_{1}^{1}\right)=H\left(X_{2}^{1}\right)$. Moreover, consider X_{1}^{2} defined over the same \mathcal{X} such that $P_{X_{1}^{2}}(x)=\lambda P_{X_{1}^{1}}(x)+(1-\lambda) P_{X_{2}^{1}}(x)$ then $H\left(X_{1}^{2}\right) \geq H\left(X_{1}^{1}\right)$.

We can show recursively with the obvious extension of notation that
$H\left(X_{1}^{n}\right) \geq H\left(X_{1}^{m}\right)$
$\forall n>m \geq 1$. Now $\lim _{n \rightarrow \infty} P_{X_{1}^{n}}(x)=\frac{1}{|\mathcal{X}|}$ $\forall x \in \mathcal{X}$. Hence, the uniform distribution maximizes entropy and $H(X) \leq \log (|\mathcal{X}|)$.

Conditioning reduces entropy

$$
\begin{aligned}
& H(Y \mid X)=E_{Z}[H(Y \mid X=Z)] \\
= & -\sum_{x \in \mathcal{X}} P_{X}(x) \sum_{y \in \mathcal{Y}} P_{Y \mid X}(y \mid x) \log _{2}\left[P_{Y \mid X}(y \mid x)\right]
\end{aligned}
$$

$P_{Y}(y)=\sum_{x \in \mathcal{X}} P_{X}(x) P_{Y \mid X}(y \mid x)$ hence by concavity $H(Y \mid X) \leq H(Y)$.

Hence $I(X ; Y)=H(Y)-H(Y \mid X) \geq 0$.

Independence bound:

$$
\begin{aligned}
& H\left(X_{1}, \ldots, X_{n}\right) \\
= & \sum_{i=1}^{n} H\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right) \\
\leq & \sum_{i=1}^{n} H\left(X_{i}\right)
\end{aligned}
$$

Question: $H(Y \mid X=x) \leq H(Y)$?

Mutual information and transition probability

Let us call $P_{Y \mid X}(y \mid x)$ the transition probability from X to Y. Consider a r.v. Z that takes values 0 and 1 with probability θ and $1-\theta$ and s.t.

$$
\begin{aligned}
& P_{Y \mid X, Z}(y \mid x, 0)=P_{Y \mid X}^{\prime}(y \mid x) \\
& P_{Y \mid X, Z}(y \mid x, 1)=P_{Y \mid X}^{\prime \prime}(y \mid x)
\end{aligned}
$$

and Z is independent from X

$$
I(X ;(Y, Z))=I(X ; Z)+I(X ; Y \mid Z)
$$

and

$$
I(X ;(Y, Z))=I(X ; Y)+I(X ; Z \mid Y)
$$

hence

$$
I(X ; Y \mid Z) \geq I(X ; Y)
$$

SO
$\theta I(X ; Y \mid Z=0)+(1-\theta) I(X ; Y \mid Z=1) \geq I(X ; Y)$

For a fixed input assignment, $I(X ; Y)$ is convex in the transition probabilities

Mutual information and input probability

Consider a r.v. Z such that $P_{X \mid Z}(x \mid 0)=$ $P^{\prime}(x), P_{X \mid Z}(x \mid 1)=P^{\prime \prime}(x), Z$ takes values 0 and 1 with probability θ and $1-\theta$ and Z and Y are conditionally independent, given X

$$
I(Y ; Z \mid X)=0
$$

and

$$
\begin{aligned}
I(Y ;(Z, X)) & =I(Y ; Z)+I(Y ; X \mid Z) \\
& =I(Y ; X)+I(Y ; Z \mid X)
\end{aligned}
$$

SO

$$
I(X ; Y \mid Z) \leq I(X ; Y)
$$

Mutual information is a concave function of the input probabilities.

Exercise: jamming game in which we try to maximize mutual information and jammer attempts to reduce it. What will the policies be?

Markov chain

Markov chain:
random variables X, Y, Z form a Markov chain in that order $X \rightarrow Y \rightarrow Z$ if the joint PMF can be written as

$$
P_{X, Y, Z}(x, y, z)=P_{X}(x) P_{Y \mid X}(y \mid x) P_{Z \mid Y}(z \mid y) .
$$

Markov chain

Consequences:

- $X \rightarrow Y \rightarrow Z$ iff X and Z are conditionally independent given Y

$$
\begin{aligned}
& P_{X, Z \mid Y}(x, z \mid y) \\
= & \frac{P_{X, Y, Z}(x, y, z)}{P_{Y}(y)} \\
= & \frac{P_{X, Y}(x, y)}{P_{Y}(y)} P_{Z \mid Y}(z \mid y) \\
= & P_{X \mid Y}(x \mid y) P_{Z \mid Y}(z \mid y)
\end{aligned}
$$

so Markov implies conditional independence and vice versa

- $X \rightarrow Y \rightarrow Z \Leftrightarrow Z \rightarrow Y \rightarrow X$ (see above LHS and last RHS)

Data Processing Theorem

If $X \rightarrow Y \rightarrow Z$ then $I(X ; Y) \geq I(X ; Z)$
$I(X ; Y, Z)=I(X ; Z)+I(X ; Y \mid Z)$
$I(X ; Y, Z)=I(X ; Y)+I(X ; Z \mid Y)$
X and Z are conditionally independent given
Y, so $I(X ; Z \mid Y)=0$
hence $I(X ; Z)+I(X ; Y \mid Z)=I(X ; Y)$ so $I(X ; Y) \geq I(X ; Z)$ with equality iff $I(X ; Y \mid Z)=$ 0
note: $X \rightarrow Z \rightarrow Y \Leftrightarrow I(X ; Y \mid Z)=0 Y$ depends on X only through Z

Consequence: you cannot "undo" degradation

Consequence: Second Law of Thermodynamics

The conditional entropy $H\left(X_{n} \mid X_{0}\right)$ is nondecreasing as n increases for a stationary Markov process X_{0}, \ldots, X_{n}

Look at the Markov chain $X_{0} \rightarrow X_{n-1} \rightarrow$ X_{n}

DPT says
$I\left(X_{0} ; X_{n-1}\right) \geq I\left(X_{0} ; X_{n}\right)$
$H\left(X_{n-1}\right)-H\left(X_{n-1} \mid X_{0}\right) \geq H\left(X_{n}\right)-H\left(X_{n} \mid X_{0}\right)$
so $H\left(X_{n-1} \mid X_{0}\right) \leq H\left(X_{n} \mid X_{0}\right)$

Note: we still have that $H\left(X_{n} \mid X_{0}\right) \leq H\left(X_{n}\right)$.

Fano's lemma

Suppose we have r.v.s X and Y, Fano's lemma bounds the error we expect when estimating X from Y

We generate an estimator of X that is $\widehat{X}=$ $g(Y)$.

Probability of error $P_{e}=\operatorname{Pr}(\widehat{X} \neq X)$
Indicator function for error \mathbf{E} which is 1 when $X=\widehat{X}$ and 0 otherwise. Thus, $P_{e}=$ $P(\mathbf{E}=0)$

Fano's Iemma:
$H(\mathbf{E})+P_{e} \log (|\mathcal{X}|-1) \geq H(X \mid Y)$

Proof of Fano's lemma

$$
\begin{aligned}
& H(\mathbf{E}, X \mid Y) \\
= & H(X \mid Y)+H(\mathbf{E} \mid X, Y) \\
= & H(X \mid Y)
\end{aligned}
$$

$$
\begin{aligned}
& H(\mathbf{E}, X \mid Y) \\
= & H(\mathbf{E} \mid Y)+H(X \mid \mathbf{E}, Y)
\end{aligned}
$$

$$
H(\mathbf{E} \mid Y) \leq H(\mathbf{E})
$$

$$
H(X \mid \mathbf{E}, Y)
$$

$$
=P_{e} H(X \mid \mathbf{E}=O, Y)+\left(1-P_{e}\right) H(X \mid \mathbf{E}=1, Y)
$$

$$
=P_{e} H(X \mid \mathbf{E}=O, Y)
$$

$$
\leq P_{e} H(X \mid \mathbf{E}=O)
$$

$$
\leq P_{e} \log (|\mathcal{X}|-1)
$$

MIT OpenCourseWare
http://ocw.mit.edu

6.441 Information Theory

Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

