LECTURE 2

Convexity and related notions

Last time:

- Goals and mechanics of the class
- notation
- entropy: definitions and properties
- mutual information: definitions and properties

Lecture outline

- Convexity and concavity
- Jensen's inequality
- Positivity of mutual information
- Data processing theorem
- Fano's inequality

Reading: Scts. 2.6-2.8, 2.11.

Convexity

Definition: a function f(x) is convex over (*a*, *b*) iff $\forall x_1, x_2 \in (a, b)$ and $0 \le \lambda \le 1$

 $f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2)$

and is strictly convex iff equality holds iff $\lambda = 0$ or $\lambda = 1$.

f is concave iff -f is convex.

Convenient test: if f has a second derivative that is non-negative (positive) everywhere, then f is convex (strictly convex)

Jensen's inequality

if f is a convex function and \boldsymbol{X} is a r.v., then

 $E_X[f(X)] \ge f(E_X[X])$

if f is strictly convex, then $E_X[f(X)] = f(E_X[X]) \Rightarrow X = E[X].$

Concavity of entropy

Let $f(x) = -x \log(x)$ then

$$f'(x) = -x \log(e) \frac{1}{x} - \log(x)$$
$$= -\log(x) - \log(e)$$

and

$$f''(x) = -\log(e)\frac{1}{x} < 0$$

for x > 0.

$$H(X) = \sum_{x \in |\mathcal{X}|} f(P_X(x))$$

thus the entropy of X is concave in the value of $P_X(x)$ for every x.

Thus, consider two random variables, X_1 and X_2 with common \mathcal{X} . Then the random variable X defined over the same \mathcal{X} such that $P_X(x) = \lambda P_{X_1}(x) + (1-\lambda)P_{X_2}(x)$ satisfies:

 $H(X) \geq \lambda H(X_1) + (1 - \lambda) H(X_2).$

Maximum entropy

Consider any random variable X_1^1 on \mathcal{X} . For simplicity, consider $\mathcal{X} = \{1, \ldots, |\mathcal{X}|\}$ (we just want to use the elements of \mathcal{X} as indices). Now consider X_2^1 a random variable such $P_{X_2^1}(x) = P_{X_1^1}(shift(x))$ where *shift* denotes the cyclic shift on $(1, \ldots, \mathcal{X})$. Clearly $H(X_1^1) = H(X_2^1)$. Moreover, consider X_1^2 defined over the same \mathcal{X} such that $P_{X_1^2}(x) = \lambda P_{X_1^1}(x) + (1 - \lambda) P_{X_2^1}(x)$ then $H(X_1^2) \ge H(X_1^1)$.

We can show recursively with the obvious extension of notation that

 $H(X_1^n) \ge H(X_1^m)$

 $\forall n > m \geq 1$. Now $\lim_{n\to\infty} P_{X_1^n}(x) = \frac{1}{|\mathcal{X}|}$ $\forall x \in \mathcal{X}$. Hence, the uniform distribution maximizes entropy and $H(X) \leq \log(|\mathcal{X}|)$.

Conditioning reduces entropy

$$H(Y|X) = E_Z[H(Y|X = Z)]$$

= $-\sum_{x \in \mathcal{X}} P_X(x) \sum_{y \in \mathcal{Y}} P_{Y|X}(y|x) \log_2[P_{Y|X}(y|x)]$

 $P_Y(y) = \sum_{x \in \mathcal{X}} P_X(x) P_{Y|X}(y|x)$ hence by concavity $H(Y|X) \leq H(Y)$.

Hence
$$I(X;Y) = H(Y) - H(Y|X) \ge 0$$
.

Independence bound:

$$H(X_1, \dots, X_n)$$

$$= \sum_{i=1}^n H(X_i | X_1, \dots, X_{i-1})$$

$$\leq \sum_{i=1}^n H(X_i)$$

Question: $H(Y|X = x) \leq H(Y)$?

Mutual information and transition probability

Let us call $P_{Y|X}(y|x)$ the transition probability from X to Y. Consider a r.v. Z that takes values 0 and 1 with probability θ and $1 - \theta$ and s.t.

 $P_{Y|X,Z}(y|x,0) = P'_{Y|X}(y|x)$

$$P_{Y|X,Z}(y|x,1) = P_{Y|X}''(y|x)$$

and \boldsymbol{Z} is independent from \boldsymbol{X}

$$I(X; (Y, Z)) = I(X; Z) + I(X; Y|Z)$$

and

$$I(X; (Y, Z)) = I(X; Y) + I(X; Z|Y)$$

hence

$$I(X;Y|Z) \ge I(X;Y)$$

SO

$$\theta I(X; Y|Z = 0) + (1 - \theta)I(X; Y|Z = 1) \ge I(X; Y)$$

For a fixed input assignment, I(X;Y) is convex in the transition probabilities

Mutual information and input probability

Consider a r.v. Z such that $P_{X|Z}(x|0) = P'(x)$, $P_{X|Z}(x|1) = P''(x)$, Z takes values 0 and 1 with probability θ and $1 - \theta$ and Z and Y are conditionally independent, given X

$$I(Y; Z|X) = 0$$

and

$$I(Y; (Z, X)) = I(Y; Z) + I(Y; X|Z) = I(Y; X) + I(Y; Z|X)$$

SO

$$I(X;Y|Z) \le I(X;Y).$$

Mutual information is a concave function of the input probabilities.

Exercise: jamming game in which we try to maximize mutual information and jammer attempts to reduce it. What will the policies be?

Markov chain

Markov chain:

random variables X, Y, Z form a Markov chain in that order $X \to Y \to Z$ if the joint PMF can be written as

 $P_{X,Y,Z}(x,y,z) = P_X(x)P_{Y|X}(y|x)P_{Z|Y}(z|y).$

Consequences:

• $X \to Y \to Z$ iff X and Z are conditionally independent given Y

$$= \frac{P_{X,Z|Y}(x, z|y)}{P_{X,Y,Z}(x, y, z)}$$

= $\frac{P_{X,Y,Z}(x, y, z)}{P_{Y}(y)}$
= $\frac{P_{X,Y}(x, y)}{P_{Y}(y)}P_{Z|Y}(z|y)$
= $P_{X|Y}(x|y)P_{Z|Y}(z|y)$

so Markov implies conditional independence and vice versa

• $X \to Y \to Z \Leftrightarrow Z \to Y \to X$ (see above LHS and last RHS)

Data Processing Theorem

If $X \to Y \to Z$ then $I(X;Y) \ge I(X;Z)$

I(X;Y,Z) = I(X;Z) + I(X;Y|Z)

I(X; Y, Z) = I(X; Y) + I(X; Z|Y)

X and Z are conditionally independent given Y, so I(X; Z|Y) = 0

hence I(X;Z) + I(X;Y|Z) = I(X;Y) so $I(X;Y) \ge I(X;Z)$ with equality iff I(X;Y|Z) = 0

note: $X \to Z \to Y \Leftrightarrow I(X;Y|Z) = 0 Y$ depends on X only through Z

Consequence: you cannot "undo" degradation

Consequence: Second Law of Thermodynamics

The conditional entropy $H(X_n|X_0)$ is nondecreasing as n increases for a stationary Markov process X_0, \ldots, X_n

Look at the Markov chain $X_0 \to X_{n-1} \to X_n$

DPT says

 $I(X_0; X_{n-1}) \ge I(X_0; X_n)$

 $H(X_{n-1}) - H(X_{n-1}|X_0) \ge H(X_n) - H(X_n|X_0)$

so $H(X_{n-1}|X_0) \le H(X_n|X_0)$

Note: we still have that $H(X_n|X_0) \leq H(X_n)$.

Fano's lemma

Suppose we have r.v.s X and Y, Fano's lemma bounds the error we expect when estimating X from Y

We generate an estimator of X that is $\widehat{X} = g(Y)$.

Probability of error $P_e = Pr(\widehat{X} \neq X)$

Indicator function for error **E** which is 1 when $X = \widehat{X}$ and 0 otherwise. Thus, $P_e = P(\mathbf{E} = 0)$

Fano's lemma:

 $H(\mathbf{E}) + P_e \log(|\mathcal{X}| - 1) \ge H(X|Y)$

Proof of Fano's lemma

 $H(\mathbf{E}, X|Y)$

- $= H(X|Y) + H(\mathbf{E}|X,Y)$

- = H(X|Y)

 $H(\mathbf{E}, X|Y)$

 $= H(\mathbf{E}|Y) + H(X|\mathbf{E},Y)$

 $H(\mathbf{E}|Y) \leq H(\mathbf{E})$

 $H(X|\mathbf{E},Y)$ $= P_e H(X|\mathbf{E} = O, Y) + (1 - P_e)H(X|\mathbf{E} = 1, Y)$ $= P_e H(X|\mathbf{E} = O, Y)$ $\leq P_e H(X|\mathbf{E}=O)$

 $\leq P_e \log(|\mathcal{X}| - 1)$

6.441 Information Theory Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.