LECTURE 3

Convergence and Asymptotic Equipartition Property

Last time:

- Convexity and concavity
- Jensen's inequality
- Positivity of mutual information
- Data processing theorem
- Fano's inequality

Lecture outline

- Types of convergence
- Weak Law of Large Numbers
- Strong Law of Large Numbers
- Asymptotic Equipartition Property

Reading: Scts. 3.1-3.2.

Types of convergence

Recall what a random variable is: a mapping from its set of sample values Ω onto \mathcal{R}

$$
\begin{aligned}
X: & \Omega \mapsto \mathcal{R} \\
& \xi \rightarrow X(\xi)
\end{aligned}
$$

In the cases we have been discussing, $\Omega=$ \mathcal{X} and we map onto [0,1]

Types of convergence

- Sure convergence: a random sequence X_{1}, \ldots converges surely to r.v. X if $\forall \xi \in$ Ω the sequence $X_{n}(\xi)$ converges to $X(\xi)$ as $n \rightarrow \infty$
- Almost sure convergence (also called convergence with probability 1) the random sequence converges a.s. (w.p. 1) to X if the sequence $X_{1}(\xi), \ldots$ converges to $X(\xi)$ for all ξ except possibly on a set of Ω of probability 0
- Mean-square convergence: X_{1}, \ldots converges in m.s. sense to r.v. X if
$\lim _{n \rightarrow \infty} E_{X_{n}}\left[\left|X_{n}-X\right|^{2}\right] \rightarrow 0$
- Convergence in probability: the sequence converges in probability to X if $\forall \epsilon>0$
$\lim _{n \rightarrow \infty} \operatorname{Pr}\left[\left|X_{n}-X\right|>\epsilon\right] \rightarrow 0$
- Convergence in distribution: the sequence converges in distribution if the cumulative distribution function $F_{n}(x)=\operatorname{Pr}\left(X_{n} \leq\right.$ $x)$ satisfies $\lim _{n \rightarrow \infty} F_{n}(x) \rightarrow F_{X}(x)$ at all x for which F is continuous.

Relations among types of convergence

Venn diagram of relation:

Weak Law of Large Numbers

X_{1}, X_{2}, \ldots i.i.d.
finite mean μ and variance σ^{2}

$$
M_{n}=\frac{X_{1}+\cdots+X_{n}}{n}
$$

- $\mathrm{E}\left[M_{n}\right]=$
- $\operatorname{Var}\left(M_{n}\right)=$

$$
\operatorname{Pr}\left(\left|M_{n}-\mu\right| \geq \epsilon\right) \leq \frac{\sigma_{X}^{2}}{n \epsilon^{2}}
$$

Weak Law of Large Numbers

Consequence of Chebyshev's inequality: Random variable X

$$
\begin{aligned}
& \sigma_{X}^{2}=\sum_{x \in \mathcal{X}}(x-\mathbf{E}[X])^{2} P_{X}(x) \\
& \sigma_{X}^{2} \geq c^{2} \operatorname{Pr}(|X-\mathbf{E}[X]| \geq c)
\end{aligned}
$$

$$
\operatorname{Pr}(|X-\mathbf{E}[X]| \geq c) \leq \frac{\sigma_{X}^{2}}{c^{2}}
$$

$$
\operatorname{Pr}\left(|X-\mathbf{E}[X]| \geq k \sigma_{X}\right) \leq \frac{1}{k^{2}}
$$

Strong Law of Large Numbers

Theorem: (SLLN) If X_{i} are IID, and $E_{X}[|X|]<$ ∞, then

$$
M_{n}=\frac{X_{1}+\cdots+X_{n}}{n} \rightarrow E_{X}[X], \quad \text { w.p.1. }
$$

AEP

If X_{1}, \ldots, X_{n} are IID with distribution P_{X}, then
$-\frac{1}{n} \log \left(P_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)\right) \rightarrow H(X)$ in probability

Notation: $\underline{X}_{i}^{j}=\left(X_{i}, \ldots, X_{j}\right)$ (if $i=1$, generally omitted)

Proof: create r.v. Y that takes the value $y_{i}=-\log \left(P_{X}\left(x_{i}\right)\right)$ with probability $P_{X}\left(x_{i}\right)$ (note that the value of Y is related to its probability distribution)
we now apply the WLLN to Y

AEP

$$
\begin{aligned}
& -\frac{1}{n} \log \left(P_{\underline{X}^{n}}\left(\underline{x}^{n}\right)\right) \\
= & -\frac{1}{n} \sum_{i=1}^{n} \log \left(P_{X}\left(x_{i}\right)\right) \\
= & \frac{1}{n} \sum_{i=1}^{n} y_{i}
\end{aligned}
$$

using the WLLN on Y
$\frac{1}{n} \sum_{i=1}^{n} y_{i} \rightarrow E_{Y}[Y]$ in probability
$E_{Y}[Y]=-E_{Z}\left[\log \left(P_{X}(Z)\right)\right]=H(X)$
for some r.v. Z identically distributed with X

Consequences of the AEP: the typical set

Definition: $A_{\epsilon}^{(n)}$ is a typical set with respect to $P_{X}(x)$ if it is the set of sequences in the set of all possible sequences $\underline{x}^{n} \in \underline{\mathcal{X}}^{n}$ with probability:

$$
2^{-n(H(X)+\epsilon)} \leq P_{\underline{X}^{n}}\left(\underline{x}^{n}\right) \leq 2^{-n(H(X)-\epsilon)}
$$

equivalently

$$
H(X)-\epsilon \leq-\frac{1}{n} \log \left(P_{\underline{X}^{n}}\left(\underline{x}^{n}\right)\right) \leq H(X)+\epsilon
$$

As n increases, the bounds get closer together, so we are considering a smaller range of probabilities

We shall use the typical set to describe a set with characteristics that belong to the majority of elements in that set.

Note: the variance of the entropy is finite

Consequences of the AEP: the typical set

Why is it typical? AEP says $\forall \epsilon>0, \forall \delta>0$, $\exists n_{0}$ such that $\forall n>n_{0}$

$$
\operatorname{Pr}\left(A_{\epsilon}^{(n)}\right) \geq 1-\delta
$$

(note: δ can be ϵ)

How big is the typical set?

$$
\begin{aligned}
1 & =\sum_{\underline{x}^{n} \in \mathcal{X}^{n}} P_{\underline{X}^{n}}\left(\underline{x}^{n}\right) \\
& \geq \sum_{\underline{x}^{n} \in A_{\epsilon}^{(n)}} P_{\underline{X}^{n}}\left(\underline{x}^{n}\right) \\
& \geq \sum_{\underline{x}^{n} \in A_{\epsilon}^{(n)}} 2^{-n(H(X)+\epsilon)} \\
& =\left|A_{\epsilon}^{(n)}\right| 2^{-n(H(X)+\epsilon)} \\
& \Rightarrow\left|A_{\epsilon}^{(n)}\right| \leq 2^{n(H(X)+\epsilon)}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Pr}\left(A_{\epsilon}^{(n)}\right) \geq(1-\epsilon) \\
\Rightarrow \quad & 1-\epsilon \leq \sum_{\underline{x}^{n} \in A_{\epsilon}^{(n)}} P_{\underline{X}^{n}}\left(\underline{x}^{n}\right) \\
& \leq\left|A_{\epsilon}^{(n)}\right| 2^{-n(H(X)-\epsilon)} \\
\Rightarrow \quad & \left|A_{\epsilon}^{(n)}\right| \geq 2^{n(H(X)-\epsilon)}(1-\epsilon)
\end{aligned}
$$

Visualize:

Consequences of the AEP: using the typical set for compression

Description in typical set requires no more than $n(H(X)+\epsilon)+1$ bits (correction of 1 bit because of integrality)

Description in atypical set $A_{\epsilon}^{(n)}{ }^{C}$ requires no more than $n \log (|\mathcal{X}|)+1$ bits

Add another bit to indicate whether in $A_{\epsilon}^{(n)}$ or not to get whole description

Consequences of the AEP: using the typical set for compression

Let $l\left(\underline{x}^{n}\right)$ be the length of the binary description of \underline{x}^{n}

$$
\begin{aligned}
& \forall \epsilon>0, \exists n_{0} \text { s.t. } \forall n>n_{0}, \\
&=\sum_{\underline{X}^{n}}\left[l\left(\underline{X}^{n}\right)\right] \\
& P_{\underline{X}^{n}}\left(\underline{x}^{n}\right) l\left(\underline{x}^{n}\right)+\sum_{\underline{x}^{n}}^{(n)} \\
& \sum_{\underline{x}^{n} \in A_{\delta}^{(n) C}} P_{\underline{X}^{n}}\left(\underline{x}^{n}\right) l\left(\underline{x}^{n}\right) \\
& P_{\underline{X}^{n}} \underline{x}^{n}\left(\underline{x}^{n}\right)(n(H(X)+\delta)+2) \\
& \sum_{x^{n}} P_{\underline{X}^{n}}\left(\underline{x}^{n}\right)(n \log (|\mathcal{X}|)+2) \\
& n H(X)+n \epsilon+2
\end{aligned}
$$

for δ small enough with respect to ϵ
so $E_{\underline{X}^{n}}\left[\frac{1}{n} l\left(\underline{X}^{n}\right)\right] \leq H(X)+\epsilon$ for n sufficiently large.

Jointly typical sequences

$A_{\epsilon}^{(n)}$ is a typical set with respect to $P_{X, Y}(x, y)$ if it is the set of sequences in the set of all possible sequences $\left(\underline{x}^{n}, \underline{y}^{n}\right) \in \underline{\mathcal{X}}^{n} \times \underline{\mathcal{Y}}^{n}$ with probability:

$$
\begin{aligned}
& 2^{-n(H(X)+\epsilon)} \leq P_{\underline{X}^{n}}\left(\underline{x}^{n}\right) \leq 2^{-n(H(X)-\epsilon)} \\
& 2^{-n(H(Y)+\epsilon)} \leq P_{\underline{Y}^{n}}\left(\underline{y}^{n}\right) \leq 2^{-n(H(Y)-\epsilon)} \\
& 2^{-n(H(X, Y)+\epsilon)} \leq P_{\underline{X}^{n}}, \underline{Y}^{n} \\
&\left(\underline{x}^{n}, \underline{y}^{n}\right) \leq 2^{-n(H(X, Y)-\epsilon)}
\end{aligned}
$$

for ($\underline{X}^{n}, \underline{Y}^{n}$) sequences of length n IID according $P_{\underline{X}^{n}, \underline{Y}^{n}}\left(\underline{x}^{n}, \underline{y}^{n}\right)=\prod_{i=1}^{n} P_{X, Y}\left(x_{i}, y_{i}\right)$

$$
\operatorname{Pr}\left(\left(\underline{X}^{n}, \underline{Y}^{n}\right) \in A_{\epsilon}^{(n)}\right) \rightarrow 1 \text { as } n \rightarrow \infty
$$

Jointly typical sequences

Use the union bound

$$
\left.\begin{array}{rl}
& \operatorname{Pr}\left(\left(\underline{X}^{n}, \underline{Y}^{n}\right) \notin A_{\epsilon}^{(n)}\right) \\
\leq & \operatorname{Pr}\left(\left(\underline{X}^{n}, \underline{Y}^{n}\right) \notin A_{\epsilon}^{\prime \prime \prime}(n)\right.
\end{array}\right)=\begin{aligned}
+ & \operatorname{Pr}\left(\left(\underline{X}^{n}\right) \notin A_{\epsilon}^{\prime \prime(n)}\right) \\
+ & \operatorname{Pr}\left(\left(\underline{Y}^{n}\right) \notin A_{\epsilon}^{\prime(n)}\right)
\end{aligned}
$$

For $A^{\prime \prime \prime}$ single typical sequence for pair, $A^{\prime \prime}$ for X and A^{\prime} for Y
each element in the RHS goes to 0

MIT OpenCourseWare
http://ocw.mit.edu

6.441 Information Theory

Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

