
LECTURE 5


Last time: 

Stochastic processes • 

Markov chains • 

Entropy rate • 

Random walks on graphs
• 

Hidden Markov models
• 

Lecture outline 

Codes • 

Kraft inequality • 

optimal codes. • 

Reading: Scts. 5.1-5.4. 



Codes for random variables


Notation: the concatenation of two strings 

x and y is denoted by xy. The set of all 

strings over a finite alphabet D is denoted 

by D∗. W.l.o.g. assume D = 0, 1, . . . , D − 1 

where D = |D ∗ |. 

Definition: a source code for a random 

variable X is a map 

C : X �→ D∗ 

x C(x)→ 

where C(x) is the codeword associated with 

x 

l(x) is the length of C(x) 

The length of a code C is 

L(C) = EX[l(X)] 



Codes for random variables


C is nonsingular if every element of X maps 

onto a different element of D∗ 

The extension of a code C : X �→ D∗ is the 

code 

C∗ : X∗ �→ D∗ 

xn C∗(xn) = C(x1)C(x2) . . . C(xn)→ 

A code is uniquely decodable if its extension 

is nonsingular 

A code is instantaneous (or prefix code) iff 

no codeword of C is a prefix of any other 

codeword C 

Visually: construct a tree whose leaves are 

codewords 



Kraft inequality


Any instantaneous code C with code lengths 

l1, l2, . . . , lm must satisfy 

m� 
D−li ≤ 1 

i=1 

Conversely, given lengths l1, l2, . . . , lm that 

satisfy the above inequality, there exists an 

instantaneous code with these codeword 

lengths 

Proof: construct a D-ary tree T (code

words are leaves) 

Extend tree T to D-ary tree T � with depth 

lMAX, total number of leaves is DlMAX 



Kraft inequality


Each leaf of T � is a descendant of at most 

one leaf of T 

Leaf in T corresponding to codeword C(i) 

has exactly DlMAX −li descendants in T � (1 

if li = lMAX) 

Summing over all leaves of T gives 

m� 
DlMAX −li ≤ DlMAX 

i=1 
m� 

D−li ⇒ 
i=1 

≤ 1 



Kraft inequality


Given lengths l1, l2, . . . , lm satisfying Kraft’s 

inequality, we can construct a tree by as

signing C(i) to first available node at depth 

C(i) 



Extended Kraft inequality


Kraft inequality holds for all countably in

finite set of codewords 

Let n(y1y2 . . . yli) be the real 
�l

j
i 
=1 yjD

−j 

associated with the ith codeword 

Why are the n(y1y2 . . . yli)s for different code-

words different? 

By the same reasoning, all intervals 
� 

1 
� 

n(y1y2 . . . yli), n(y1y2 . . . yli) + 
Dli 

are disjoint 

since these intervals are all in (0, 1), the 

sum of their lengths is ≤ 1 

For converse, reorder indices in increasing 

order and assign intervals as we walk along 

the unit interval 



Optimal codes


Optimal code is defined as code with small

est possible C(L) with respect to PX 

Optimization: 

minimize 
�

x∈X PX(x)l(x) 

subject to 
�

x∈X D
−l(x) ≤ 1 

and l(x)s are integers 



Optimal codes


Let us relax the second constraint and re

place the first with equality to obtain a 

lower bound 

J = 
�

x∈X PX(x)l(x) + λ 
��

x∈X D
−l(x) − 1

� 

∂J use Lagrange multipliers and set 
∂l(i) = 0 

PX(i) − λ log(D)D−l(i) = 0 

equivalently D−l(i) = PX (i) 
λ log(D) 

using Kraft inequality (now relaxed to equal

ity) yields 

1 = 
� 

D−l(x) = 
� PX(i) 

i∈X i∈X λ log(D) 

so λ = 1 , yielding l(i) = − logD(PX(i))log(D)



Optimal codes


Thus a bound on the optimal code length 

is 

PX(i) logD(PX(i)) = HD(X)− 
�


i∈X


This is lower bound, equality holds iff PX 

is D-adic, PX(i) = D−l(i) for integer l(i) 



Optimal codes


The optimal codelength L∗ satisfies 

HD(X) ≤ L∗ ≤ HD(X) + 1 

Upper bound: take l(i) = �logD(PX(i))� 
� 

D�− logD(PX (i))� ≤ 
� 

PX(i) = 1 
i∈X 

thus these lengths satisfy Kraft’s inequality 

and we can create a prefix-free code with 

these lengths 

L∗ ≤	
� 

PX(i)�− logD(PX(i))�

i∈X


≤	
� 

PX(i)(− logD(PX(i)) + 1) 
i∈X 

= HD(X) + 1 

We call these types of codes Shannon codes 



Optimal codes 

Is this as tight as it gets?


Consider coding several symbols together


C : X n �→ D∗ 

expected codeword length is 
�

xn∈X n PXn(xn)l(xn) 

optimum satisfies 

HD(Xn) ≤ L∗ ≤ HD(Xn) + 1 

per symbol codeword length is 

HD(Xn) L∗ HD(Xn) + 1 
n ≤ n ≤ n n 
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