
LECTURE 11


Last time:


The channel coding theorem overview
• 

Upper bound on the error probability
• 

Bound on not being typical • 

Bound on too many elements being typ• 

ical


Coding theorem (weak)
• 

Lecture outline


Strong coding theorem • 

Revisiting channel and codes • 

Bound on probability of error • 

Error exponent • 



Revisiting channel and codes


Consider a DMC with transition probabili

ties PY X(y x)| |

For any block length N , let 

NPY N |XN (y |xN ) = 
�

i
N 
=1 PY |X(yi|xi) 

PXN (xN ) = 
�N

i=1 PX(xi) 

PY N (yN ) = 
�

i
n 
=1 PY (yi) 

in particular we can select the input prob

ability to be capacity-achieving, since IID 

inputs yield capacity for a DMC 

the output alphabet Y and the input alpha

bet X may be different 



Revisiting channel and codes


The code is a block code with bit blocks 

of length L being mapped onto code se

quences of length N 

For binary sequences, the block code maps 

all the possible M = 2L binary sequences 

onto sequences xN 

The rate of a block code is R = log M 
N 

Let τc be the duration of an output symbol 

y from Y, the data rate in bits is R 
τc 

For any positive integer and R > 0, a (N, R) 

block code is a code of length N which has 

�2NR� codewords 



Upper bound on probability


Recall that for the weak coding theorem we 
performed a typicality-based decoding 

That decoding led to a WLLN type of ar
gument, which was the source of the poor 
handle we have on the behavior of error 
probability with N 

Let us then consider another criterion for 
decoding: maximum likelihood (ML) 

select m for which probability of receiving 
yN is maximum 

N NPY N,XN 

�
y |xN (m)

� 
≥ PY N,XN 

�
y |xN (m�)

� 

= m∀m� �

Let Ym be the set of output vectors yN 

whose decoding is the message m 

The probability of error when the message 
m was transmitted is: 

NPe,m = 
�

yN 
m

PY N XN 

�
y xN (m)

� 

∈YC | |



Upper bound on probability 

Theorem: 

The average probability of decoding error 
given that the message m was sent, aver
aged over all possible block codes, is bounded, 
for any choice of ρ ∈ [0, 1] by 

Ecodebooks[Pe,m] ≤ (M − 1)ρ 

⎡ 
1 

⎤1+ρ 
� ⎢� 

PXN 

�
xN 

� 
PY N XN 

�
yN xN 

�
1+ρ ⎥

N 

⎣
N 

| | ⎦ 

y x

Proof: 

The probability of error given that m was 
transmitted averaged over all possible codes 
is: 

Ecodebooks[Pe,m] = 
� � 

xN (m) yN 

NPXN 

�
xN (m)

� 
PY N |XN 

�
y |xN (m)

� 

Pr[error|m, XN = xN (m), Y N = yN ] 



Upper bound on probability 

Proof continued 

For a given m, xN (m), yN , let A 
�
m�, xN (m), yN 

� 

be the event that 

PY N XN 

�
yN |xN (m)

� 
≤ PY N XN 

�
yN |xN (m�)

� 

| |

an error occurs when at least one of the 

events A 
�
m�, xN (m), yN 

�
, m =� m� takes place 

therefore 

Pr[error m, XN = xN (m), Y N = yN ] ⎛ 
| ⎞ 

= Pr ⎜

 

A 
�
m�, x N (m), y N 

�⎟
⎝ ⎠

m=m�

⎡ 
� ⎤ρ


≤ ⎣⎢
� 

Pr 
�
A 

�
m�, x N (m), y N 

��
⎦⎥


m=� m�




�

Upper bound on probability


Proof continued 

Why not just use the union bound 
⎛ ⎞ 

Pr ⎜

 

A 
�
m�, x N (m), y N 

�⎟⎝ ⎠ 
m=m�

⎡ 
� ⎤ 

≤ ⎣⎢
� 

Pr 
�
A 

�
m�, x N (m), y N 

��
⎦⎥

m=m� 

if RHS is ≥ 1, then it remains so even after 
being raised to a power 

if RHS if ≤ 1, then it increases when raised 
to a power in [0, 1] 

Let us now compute 

Pr 
�
A 

�
m�, xN (m), yN 

�� 

as a sum over the possible encodings of m� 



= 
� 

Upper bound on probability 

Proof continued 

Pr 
�
A 

�
m�, x N (m), y N 

�� 

xN (m�):P
Y N |XN 

�
yN |xN (m)

�≤P
Y N |XN 

�
yN |xN (m�)

� 

PXN 

�
xN (m�)

� 

≤ 
� 

PXN 

�
xN (m�)

� 

xN (m�)


PY N |XN 

�
yN |xN (m�)

�r


| N |
PY N XN 

�
y xN (m)

�r 

for any r > 0 

note that the last expression does not de

pend on m� because we sum over all the 

possible codes for m� 



Upper bound on probability


Proof continued 

Combining results, we obtain that 

Pr[error m, XN = xN (m), Y N = yN ] ⎡ 
| ⎤ρ 

≤ ⎢ � 
Pr 

�
A 

�
m�, x N (m), y N 

��⎥⎣ ⎦ 
m=m�

⎡ 
�


≤ ⎢⎣(M − 1) 
� 

PXN 

�
xN (m�)

�


xN (m�) 
ρ 

P
�
yN xN (m )

�r ⎤ 

P

Y

Y

N

N 

|

|

X

X

N

N 

�
yN 

|
|xN (m

�

)
�r 

⎥⎦ 



Upper bound on probability


Proof continued 

Averaging the error over all possible codes:


Ecodebooks[Pe,m] ≤⎡ 

(M − 1)ρ � ⎢ � 
PXN 

�
xN (m)

�
⎣ 

yN xN (m) 

NPY N XN 

�
y |xN (m)

�1−rρ
� 

⎡ 
|


⎢ � 
P

�
xN (m )

�

⎣ XN 

�

xN (m�) 

PY N |XN 

�
yN |xN (m�)

�r�ρ 



Upper bound on probability


Proof continued 

Picking r = 1 implies 1 − rρ = r so1+ρ 

Averaging the error over all possible codes:


Ecodebooks[Pe,m] ≤⎡ 

(M − 1)ρ � ⎢� 
PXN 

�
xN 

�
⎣

N Ny x
�1+ρ1 

PY N XN 

�
yN |xN 

�
1+ρ 

|

QED! 



Upper bound on probability 

Have we used the DMC nature of the chan
nel? Only insofar as it provides block-by
block memorylessness. Let us now make 
greater use of the DMC assumption 

We assume PXn(xn) = 
�N

i=1 PX(xi) so 

Ecodebooks[Pe,m] ≤ ⎡ 
N

(M − 1)ρ � 
. . . 

� ⎣� 
. . . 

� � 
PX(xi) 

y1 yN x1 xN i=1 
1 �1+ρ 

PY X (yi xi)1+ρ | |
⎡ 

N

= (M − 1)ρ � 

. . . 
� � � 

PX(x)
⎣ 
y1 yN i=1 x


1 �1+ρ

PY X (yi x)1+ρ
| |

N

= (M − 1)ρ � � �� 

PX(x)

i=1 y x


1 �1+ρ

PY X (yi x)1+ρ
| |

⎡ 
1 

⎤1+ρ 

= (M − 1)ρ {
� ⎣� 

PX(x)PY X (yi x)1+ρ ⎦ N 

y xN 
| | } 



�


Upper bound on probability


From our definition of M and R, M − 1 ≤
2NR 

Hence 

Ecodebooks[Pe,m] ≤ 2−N(E0(ρ,PX (x)))−ρR 

for 

E0(ρ, PX(x)) 
⎡
⎣

⎤
⎦


1+ρ

1� 

PX(x)PY X (yi x)1+ρ− log
=
 |

⎛ 

⎜⎝
 |

y xN


This looks exponential, but we need to make 

sure that 

E0(ρ, PX(x))) − ρR > 0 

⎞ 

⎟⎠




Upper bound on probability


What we have done: 

related the probability of error to some ex
ponential function of the input and transi
tion PMFs 

What needs to be done: 

get rid of the expectation over codes • 
by throwing out the worst half of the 
codes 

Show that the bound behaves well (ex• 
ponent is −Nα for some α > 0) 

Relate the bound to capacity - this was • 
immediate in the weak coding theorem 
because we were using the WLLN and 
therefore capacity was related to the 
sample mean, which we used to per
form typical set decoding 
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