LECTURE 12

Last time:

- Strong coding theorem
- Revisiting channel and codes
- Bound on probability of error
- Error exponent

Lecture outline

- Error exponent behavior
- Expunging bad codewords
- Error exponent positivity
- Strong coding theorem

Last time

$E_{\text {codebooks }}\left[P_{e, m}\right] \leq 2^{-N\left(E_{0}\left(\rho, P_{X}(x)\right)-\rho R\right)}$
for

$$
\begin{aligned}
& E_{0}\left(\rho, P_{X}(x)\right) \\
= & -\log \left(\sum_{y}\left[\sum_{x_{N}} P_{X}(x) P_{Y \mid X}\left(y_{i} \mid x\right)^{\frac{1}{1+\rho}}\right]^{1+\rho}\right)
\end{aligned}
$$

We need to:

- get rid of the expectation over codes by throwing out the worst half of the codes
- Show that the bound behaves well (exponent is $-N \alpha$ for some $\alpha>0$)
- Relate the bound to capacity

Error exponent

Define

$E_{r}(R)=\max _{0 \leq \rho \leq 1} \max _{P_{X}}\left(E_{0}\left(\rho, P_{X}(x)\right)-\right.$ ρR)
then

$$
\begin{gathered}
E_{\text {codebooks }}\left[P_{e, m}\right] \leq 2^{-N E_{r}(R)} \\
E_{\text {codebooks,messages }}\left[P_{e}\right] \leq 2^{-N E_{r}(R)}
\end{gathered}
$$

For a BSC:

Expunge codewords

The new $P_{e, m}$ is bounded as follows:

$$
\begin{aligned}
& P_{e, m} \\
= & 2.2^{-N E_{r}\left(\max _{0 \leq \rho \leq 1} \max _{P_{X}}\left(E_{0}\left(\rho, P_{X}(x)\right)-\rho \frac{\log (2 M)}{N}\right)\right)} \\
= & 2.2^{-N E_{r}\left(\max _{0 \leq \rho \leq 1} \max _{P_{X}}\left(E_{0}\left(\rho, P_{X}(x)\right)-\frac{\rho}{N}-\rho \frac{\log (M)}{N}\right)\right)} \\
\leq & 4.2^{-N E_{r}\left(\max _{0 \leq \rho \leq 1} \max _{P_{X}}\left(E_{0}\left(\rho, P_{X}(x)\right)-\rho \frac{\log (M)}{N}\right)\right)} \\
= & 4.2^{-N E_{r}(R)}
\end{aligned}
$$

Now we must consider positivity. Let $P_{X}(x)$ be such that $I(X ; Y)>0$, we'll show that the behavior of E_{r} is:

Error exponent positivity

We have that:

1. $E_{0}\left(\rho, P_{X}(x)\right)>0, \forall \rho>0$
2. $I(X ; Y) \geq \frac{\partial E_{0}\left(\rho, P_{X}(x)\right)}{\partial \rho}>0, \forall \rho>0$
3. $\frac{\partial^{2} E_{0}\left(\rho, P_{X}(x)\right)}{\partial \rho^{2}} \leq 0, \forall \rho>0$

We can check that
$I(X ; Y)=\left.\frac{\partial E_{0}\left(\rho, P_{X}(x)\right)}{\partial \rho}\right|_{\rho=0}$
then showing 3 will establish the LHS of 2

Showing the RHS of 2 will establish 1

Let us show 3

Error exponent positivity

To show concavity, we need to show that $\forall \rho_{1}, \rho_{2} \forall \theta \in[0,1]$
$E_{0}\left(\rho_{3}, P_{X}(x)\right)$
$\geq \theta E_{0}\left(\rho_{1}, P_{X}(x)\right)+(1-\theta) E_{0}\left(\rho_{2}, P_{X}(x)\right)$
for $\rho_{3}=\theta \rho_{1}+\theta \rho_{2}$

We shall use the fact that
$\frac{\theta\left(1+\rho_{1}\right)}{1+\rho_{3}}+\frac{(1-\theta)\left(1+\rho_{2}\right)}{1+\rho_{3}}=1$
and Hölder's inequality:

$$
\sum_{j} c_{j} d_{j} \leq\left(\sum_{j} c_{j}^{\frac{1}{x}}\right)^{x}\left(\sum_{j} c_{j}^{\frac{1}{1-x}}\right)^{1-x}
$$

Let us pick

$$
\begin{aligned}
c_{j} & =P_{X}(j)^{\frac{\theta\left(1+\rho_{3}\right)}{1+\rho_{3}}} P_{Y \mid X}(k \mid j)^{\frac{\theta}{1+\rho_{3}}} \\
d_{j} & =P_{X}(j)^{\frac{(1-\theta)\left(1+r h o_{2}\right)}{1+\rho_{3}}} P_{Y \mid X}(k \mid j)^{\frac{1-\theta}{1+\rho_{3}}} \\
x & =\frac{\theta\left(1+\rho_{1}\right)}{1+\rho_{3}}
\end{aligned}
$$

Error exponent positivity

Proof continued

$$
\begin{aligned}
& \sum_{j \in \mathcal{X}} P_{X}(j) P_{Y \mid X}(k \mid j)^{\frac{1}{1+\rho_{3}}} \\
\leq & \left(\sum_{j \in \mathcal{X}} P_{X}(j) P_{Y \mid X}(k \mid j)^{\frac{1}{1+\rho_{1}}}\right)^{\frac{\theta\left(1+\rho_{1}\right)}{1+\rho_{3}}} \\
\times & \left(\sum_{j \in \mathcal{X}} P_{X}(j) P_{Y \mid X}(k \mid j)^{\frac{1}{1+\rho_{2}}}\right)^{\frac{(1-\theta)\left(1+\rho_{2}\right)}{1+\rho_{3}}} \\
\Rightarrow & \left(\sum_{j \in \mathcal{X}} P_{X}(j) P_{Y \mid X}(k \mid j)^{\frac{1}{1+\rho_{3}}}\right)^{1+\rho_{3}} \\
\leq & \left(\sum_{j \in \mathcal{X}} P_{X}(j) P_{Y \mid X}(k \mid j)^{\frac{1}{1+\rho_{1}}}\right)^{\theta\left(1+\rho_{1}\right)} \\
\times & \left(\sum_{j \in \mathcal{X}} P_{X}(j) P_{Y \mid X}(k \mid j)^{\frac{1}{1+\rho_{2}}}\right)^{(1-\theta)\left(1+\rho_{2}\right)}
\end{aligned}
$$

Error exponent positivity

Proof continued

$$
\begin{aligned}
& \Rightarrow \sum_{k \in \mathcal{Y}}\left(\sum_{j \in \mathcal{X}} P_{X}(j) P_{Y \mid X}(k \mid j)^{\frac{1}{1+\rho_{3}}}\right)^{1+\rho_{3}} \\
& \leq \sum_{k \in \mathcal{Y}}\left(\sum_{j \in \mathcal{X}} P_{X}(j) P_{Y \mid X}(k \mid j)^{\frac{1}{1+\rho_{1}}}\right)^{\theta\left(1+\rho_{1}\right)} \\
& \times\left(\sum_{j \in \mathcal{X}} P_{X}(j) P_{Y \mid X}(k \mid j)^{\frac{1}{1+\rho_{2}}}\right)^{(1-\theta)\left(1+\rho_{2}\right)} \\
& \leq\left[\sum_{k \in \mathcal{Y}}\left(\sum_{j \in \mathcal{X}} P_{X}(j) P_{Y \mid X}(k \mid j)^{\frac{1}{1+\rho_{1}}}\right)^{\left(1+\rho_{1}\right)}\right]^{\theta} \\
& \times\left[\left(\sum_{j \in \mathcal{X}} P_{X}(j) P_{Y \mid X}(k \mid j)^{\frac{1}{1+\rho_{2}}}\right)^{\left(1+\rho_{2}\right)}\right]^{(1-\theta)}
\end{aligned}
$$

Error exponent positivity

Proof continued

$$
\begin{aligned}
& -\log \left(\sum_{k \in \mathcal{Y}}\left(\sum_{j \in \mathcal{X}} P_{X}(j) P_{Y \mid X}(k \mid j)^{\frac{1}{1+\rho_{3}}}\right)^{1+\rho_{3}}\right) \\
\geq & -\theta \log \left(\sum_{k \in \mathcal{Y}}\left(\sum_{j \in \mathcal{X}} P_{X}(j) P_{Y \mid X}(k \mid j)^{\frac{1}{1+\rho_{1}}}\right)^{\left(1+\rho_{1}\right)}\right) \\
- & (1-\theta)\left(\left(\sum_{j \in \mathcal{X}} P_{X}(j) P_{Y \mid X}(k \mid j)^{\frac{1}{1+\rho_{2}}}\right)^{\left(1+\rho_{2}\right)}\right) \\
\Rightarrow & E_{0}\left(\rho_{3}, P_{X}\right) \geq \theta E_{0}\left(\rho_{1}, P_{X}\right)+(1-\theta) E_{0}\left(\rho_{2}, P_{X}\right)
\end{aligned}
$$

so E_{0} is concave!

Error exponent positivity

Proof continued

Hence, extremum, if it exists, of $E_{0}\left(\rho, P_{X}\right)-$ ρR over ρ occurs at $\frac{\partial E_{0}\left(\rho, P_{X}\right)}{\partial \rho}=R$, which implies that
$\left.\frac{\partial E_{0}\left(\rho, P_{X}\right)}{\partial \rho}\right|_{\rho=1} \leq R \leq\left.\frac{\partial E_{0}\left(\rho, P_{X}\right)}{\partial \rho}\right|_{\rho=0}=I(X ; Y)$
is necessary for $E_{r}\left(R, P_{X}\right)=\max _{0 \leq \rho \leq 1}\left[E_{0}\left(\rho, P_{X}\right)-\right.$ ρR] to have a maximum

We have now placed mutual information somewhere in the expression

Critical rate is $R_{C R}$ is defined as $\left.\frac{\partial E_{0}\left(\rho, P_{X}\right)}{\partial \rho}\right|_{\rho=1}$

Error exponent positivity

Proof continued
From $\frac{\partial E_{0}\left(\rho, P_{X}\right)}{\partial \rho}=R$
we obtain
$\frac{\partial R}{\partial \rho}=\frac{\partial^{2} E_{0}\left(\rho, P_{X}\right)}{\partial \rho^{2}}$
Hence $\frac{\partial R}{\partial \rho}<0, R$ decreases monotonically from C to $R_{C R}$

We can write
$E_{r}\left(R, P_{X}\right)=E_{0}\left(\rho, P_{X}\right)-\rho \frac{\partial E_{0}\left(\rho, P_{X}\right)}{\partial \rho}$
for $E_{r}\left(R, P_{X}\right)=E_{0}\left(\rho, P_{X}\right)-\rho R$ (ρ allows parametric relation)
then
$\frac{\partial E_{r}\left(R, P_{X}\right)}{\partial \rho}=-\rho \frac{\partial^{2} E_{0}\left(\rho, P_{X}\right)}{\partial \rho^{2}}>0$

Error exponent positivity

Proof continued

Taking the ratio of the derivatives, $\frac{\partial E_{r}\left(R, P_{X}\right)}{\partial R}=$ $-\rho$
$E_{r}\left(R, P_{X}\right)$ is positive for $R<C$

Moreover
$\frac{\partial^{2} E_{r}\left(R, P_{X}\right)}{\partial R^{2}}=-\left[\frac{\partial^{2} E_{0}\left(\rho, P_{X}\right)}{\partial \rho^{2}}\right]^{-1}>0$
thus $E_{r}\left(R, P_{X}\right)$ is convex and decreasing in
R over $R_{C R}<R<C$

Error exponent positivity

Proof continued

Taking $E_{r}(R)=\max _{P_{X}} E_{r}\left(R, P_{X}\right)$
is the maximum of functions that are convex and decreasing in R and so is also convex

For the P_{X} that yields capacity, $E_{r}\left(R, P_{X}\right)$ is positive for $R<C$

So we have positivity of error exponent for $0<R<C$ and capacity has been introduced

This completes the coding theorem

Note: there are degenerate cases in which $\frac{\partial E_{r}\left(R, P_{X}\right)}{\partial \rho}=$ constant and $\frac{\partial^{2} E_{r}\left(R, P_{X}\right)}{\partial^{2} \rho}=0$

MIT OpenCourseWare
http://ocw.mit.edu

6.441 Information Theory

Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

