LECTURE 13

Last time:

- Strong coding theorem
- Revisiting channel and codes
- Bound on probability of error
- Error exponent

Lecture outline

- Fano's Lemma revisited
- Fano's inequality for codewords
- Converse to the coding theorem

Reading: Sct. 8.9.

Fano's lemma

Suppose we have r.v.s X and Y, Fano's lemma bounds the error we expect when estimating X from Y

We generate an estimator of X that is $\widehat{X} = g(Y)$.

Probability of error $P_e = Pr(\widehat{X} \neq X)$

Indicator function for error **E** which is 0 when $X = \widehat{X}$ and 1 otherwise. Thus, $P_e = P(\mathbf{E} = 1)$

Fano's lemma:

 $H(\mathbf{E}) + P_e \log(|\mathcal{X}| - 1) \ge H(X|Y)$

We now need to consider the case where we are dealing with codewords

Want to show that vanishingly small probability of error is not possible if the rate is above capacity

Fano's inequality for code words

An error occurs when the decoder makes the wrong decision in selecting the message that was transmitted

Let $M \in \{1, 2, ..., 2^{nR}\}$ be the transmitted message and let \widehat{M} be the estimate of the received message from \underline{Y}^n

M is uniformly distributed in $\{1, 2, \ldots, 2^{nR}\}$ and consecutive message transmissions are IID (thus, we do not make use of a number of messages, but consider a single message transmission)

The probability of error for a codebook for transmission of M is $P_{e,M} = P(M \neq \widehat{M}) = E_{\underline{Y}^n}[P(M \neq \widehat{M} | \underline{Y}^n)]$

Consider an indicator variable E = 1 when an error occurs and E = 0 otherwise

Fano's inequality for code words

$$H(\mathbf{E}, M | \underline{Y})$$

$$= H(M | \underline{Y}) + H(\mathbf{E} | M, \underline{Y})$$

$$= H(M | \underline{Y})$$

$$= H(\mathbf{E} | \underline{Y}) + H(M | \mathbf{E}, \underline{Y})$$

$$\leq 1 + H(M | \mathbf{E}, \underline{Y})$$

Let us consider upper bounding the RHS

$$\begin{split} H(M|\mathbf{E},\underline{Y}) & \text{we are not averaging over codebooks} \\ & \text{as for the coding theorem,} \\ & \text{but are considering a specific codebook} \\ &= H(\underline{X}|\mathbf{E},\underline{Y}) \\ &= E_{M,\underline{Y}}[P(M \neq \widehat{M}|\underline{Y})]H(\underline{X}|\mathbf{E} = 1,\underline{Y}) \\ &+ (1 - E_{M,\underline{Y}}[P(M \neq \widehat{M}|\underline{Y})]) \\ &H(\underline{X}|\mathbf{E} = 0,\underline{Y}) \\ &= P_e H(\underline{X}|\mathbf{E} = 1,\underline{Y}) \\ &\leq P_e H(\underline{X}|\mathbf{E} = 1) \\ &\leq P_e \log(|\mathcal{M}| - 1) \end{split}$$

Fano's inequality for code words

Given the definition of rate, $|\mathcal{M}| = 2^{nR}$, so

 $H(M|\mathbf{E},\underline{Y}) \le P_e nR + 1$

Hence

$$H(M|\underline{Y}) \\ \leq P_e nR$$

For a given codebook, M determines \underline{X} , so

 $H(\underline{X}|\underline{Y}) = H(M|\underline{Y}) \le 1 + P_e nR$

for a DMC with a given codebook and uniformly distributed input messages

From Fano's inequality for code words to the coding theorem converse

We now want to relate this to mutual information and to capacity

Strategy:

- will need to have mutual information expressed as $H(M) - H(M|\underline{Y})$

- rate will need to come in play - try the fact that H(M) = nR for uniformly distributed messages

- will need capacity to come into play. We remember that combining the chain rule for entropies and the fact that conditioning reduces entropy yields the fact that for a DMC $I(\underline{X}^n; \underline{Y}^n) \leq nC$

Converse to the channel coding theorem

Consider some sequence of codebooks $(2^{nR}, n)$, indexed by n, such that the maximum probability of error over each codebook goes to 0 as n goes to ∞

Assume (we'll revisit this later) that the message M is drawn with uniform PMF from $\{1, 2, \dots, 2^{nR}\}$

Then nR = H(M)

Also

$$H(M) = H(M|\underline{Y}) + I(M;\underline{Y})$$

= $H(M|\underline{Y}) + H(\underline{Y}) - H(\underline{Y}|M)$
= $H(M|\underline{Y}) + H(\underline{Y}) - H(\underline{Y}|\underline{X})$
= $H(M|\underline{Y}) + I(\underline{X};\underline{Y})$
 $\leq 1 + P_e nR + nC$

Hence $R \leq \frac{1}{n} + P_e R + C$

Converse to the channel coding theorem

Letting n go to ∞ , we obtain that $R \leq C$ (since the maximum probability of error goes to 0 by our assumption)

Moreover, we obtain the following bound on error: $P_e \ge 1 - \frac{C}{R} - \frac{1}{nR}$

Note:

- for R < C, the bound has a negative RHS, so does not bound probability of error in a way that is inconsistent with forward coding theorem

- for R>C , bound becomes $1-\frac{C}{R}$ for large n , but $1-\frac{C}{R}-\frac{1}{R}$ is always lower bound

- as R goes to infinity, bound becomes 1, so is tight bound

- RHS of bound *does not* vary with n in the way we would expect, since the bound increases with n

Revisiting the message distribution

We have assumed that we can select the messages to be uniformly distributed

This is crucial to get H(M) = nR

Does the converse only work when the messages are uniformly distributed?

Let us revisit the consequences of the AEP

Consequences of the AEP: the typical set

Definition: $A_{\epsilon}^{(n)}$ is a typical set with respect to $P_X(x)$ if it is the set of sequences in the set of all possible sequences $\underline{x}^n \in \underline{\mathcal{X}}^n$ with probability:

$$2^{-n(H(X)+\epsilon)} \le P_{\underline{X}^n}(\underline{x}^n) \le 2^{-n(H(X)-\epsilon)}$$

equivalently

$$H(X) - \epsilon \leq -\frac{1}{n} \log(P_{\underline{X}^n}(\underline{x}^n)) \leq H(X) + \epsilon$$

We shall use the typical set to describe a set with characteristics that belong to the majority of elements in that set.

Consequences of the AEP: the typical set

Why is it typical? The probability of being more than δ away from H(X) goes can be arbitrarily close to 0 as $n \to \infty$, hence

$$Pr(A_{\epsilon}^{(n)}) \ge 1 - \epsilon$$

We can select ϵ to be arbitrarily small, so that the distribution of messages is arbitrarily close to uniform in the typical set

The max of the probability of error must be bounded away from 0 in the typical set for the max of the probability of error to be bounded away from 0

The probability of error is dominated by the probability of the typical set as we let $\epsilon > 0$

6.441 Information Theory Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.