
LECTURE 13 

Last time: 

Strong coding theorem • 

Revisiting channel and codes
• 

Bound on probability of error
• 

Error exponent • 

Lecture outline 

Fano’s Lemma revisited • 

Fano’s inequality for codewords • 

Converse to the coding theorem • 

Reading: Sct. 8.9. 
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Fano’s lemma


Suppose we have r.v.s X and Y , Fano’s 
lemma bounds the error we expect when 
estimating X from Y 

We generate an estimator of X that is � =X 
g(Y ). 

Probability of error Pe = Pr( � = X)X 

Indicator function for error E which is 0 
when X = X and 1 otherwise. Thus, Pe = 
P (E = 1)


Fano’s lemma:


H(E) + Pe log(|X | − 1) ≥ H(X|Y )


We now need to consider the case where

we are dealing with codewords 

Want to show that vanishingly small prob
ability of error is not possible if the rate is 
above capacity 
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Fano’s inequality for code words


An error occurs when the decoder makes 

the wrong decision in selecting the message 

that was transmitted 

Let M ∈ {1, 2, . . . , 2nR} be the transmitted 

message and let �M be the estimate of the 

received message from Y n 

M is uniformly distributed in {1, 2, . . . , 2nR}
and consecutive message transmissions are 

IID (thus, we do not make use of a number 

of messages, but consider a single message 

transmission) 

The probability of error for a codebook for 

transmission of M is Pe,M = P (M = M) = 

EY n[P (M = M Y n)] 

Consider an indicator variable E = 1 when 

an error occurs and E = 0 otherwise 
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Fano’s inequality for code words 

H(E, M Y )|
= H(M Y ) + H(E M, Y )
| |

= H(M Y )|
= H(E Y ) + H(M E, Y )| |

≤ 1 + H(M |E, Y ) 

Let us consider upper bounding the RHS 

H(M E, Y )|
we are not averaging over codebooks 
as for the coding theorem, 
but are considering a specific codebook 

= H(X E, Y )|
= EM,Y [P (M = M Y )]H(X E = 1, Y ) 
+ = M Y )])(1 − EM,Y [P (M � �|


H(X E = 0, Y )
|
= PeH(X E = 1, Y )|
≤ PeH(X|E = 1) 
≤ Pe log(|M| − 1) 



Fano’s inequality for code words


Given the definition of rate, |M| = 2nR, so 

H(M |E, Y ) ≤ PenR + 1 

Hence 

H(M Y )|
≤ PenR 

For a given codebook, M determines X, so 

H(X|Y ) = H(M |Y ) ≤ 1 + PenR 

for a DMC with a given codebook and uni

formly distributed input messages 



From Fano’s inequality for code words


to the coding theorem converse


We now want to relate this to mutual in

formation and to capacity 

Strategy: 

- will need to have mutual information ex

pressed as H(M) − H(M |Y ) 

- rate will need to come in play - try the fact 

that H(M) = nR for uniformly distributed 

messages 

- will need capacity to come into play. We 

remember that combining the chain rule 

for entropies and the fact that condition

ing reduces entropy yields the fact that for 

a DMC I(Xn; Y n) ≤ nC 



Converse to the channel coding

theorem


Consider some sequence of codebooks (2nR, n), 
indexed by n, such that the maximum prob

ability of error over each codebook goes to 
0 as n goes to ∞ 

Assume (we’ll revisit this later) that the 
message M is drawn with uniform PMF 
from {1, 2, . . . , 2nR} 

Then nR = H(M) 

Also 

H(M) = H(M Y ) + I(M ; Y )
|

= H(M |Y ) + H(Y ) − H(Y |M) 

= H(M |Y ) + H(Y ) − H(Y |X) 

= H(M Y ) + I(X; Y )|

≤ 1 + PenR + nC 

Hence R ≤ 1 + PeR + C n 



Converse to the channel coding

theorem


Letting n go to ∞, we obtain that R ≤
C (since the maximum probability of error 
goes to 0 by our assumption) 

Moreover, we obtain the following bound

on error: Pe ≥ 1 − C 

R − 1 
nR 

Note: 

- for R < C, the bound has a negative RHS, 
so does not bound probability of error in a 
way that is inconsistent with forward cod
ing theorem 

- for R > C, bound becomes 1 − C for large R 
n, but 1 − C 1 is always lower bound RR − 

- as R goes to infinity, bound becomes 1, 
so is tight bound 

- RHS of bound does not vary with n in 
the way we would expect, since the bound 
increases with n 



Revisiting the message distribution


We have assumed that we can select the 

messages to be uniformly distributed 

This is crucial to get H(M) = nR 

Does the converse only work when the mes

sages are uniformly distributed? 

Let us revisit the consequences of the AEP




Consequences of the AEP: the typical


set


Definition: A� 
(n) is a typical set with respect 

to PX(x) if it is the set of sequences in the 

set of all possible sequences xn n with∈ X
probability: 

2−n(H(X)+�) ≤ PXn (xn) ≤ 2−n(H(X)−�) 

equivalently 

1 
H(X) − � ≤ − 

n 
log(PXn (xn)) ≤ H(X) + � 

We shall use the typical set to describe a 

set with characteristics that belong to the 

majority of elements in that set. 



Consequences of the AEP: the typical


set


Why is it typical? The probability of being 

more than δ away from H(X) goes can be 

arbitrarily close to 0 as n →∞, hence 

Pr(A� 
(n)) ≥ 1 − � 

We can select � to be arbitrarily small, so 

that the distribution of messages is arbi

trarily close to uniform in the typical set 

The max of the probability of error must 

be bounded away from 0 in the typical set 

for the max of the probability of error to 

be bounded away from 0 

The probability of error is dominated by the


probability of the typical set as we let � > 0
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