LECTURE 16

Last time:

- Data compression
- Coding theorem
- Joint source and channel coding theorem
- Converse
- Robustness
- Brain teaser

Lecture outline

- Differential entropy
- Entropy rate and Burg's theorem
- AEP

Reading: Chapters 9, 11.

Continuous random variables

We consider continuous random variables with probability density functions (pdfs)
X has pdf $f_{X}(x)$
Cumulative distribution function (CDF)
$F_{X}(x)=P(X \leq x)=\int_{\infty}^{x} f_{X}(t) d t$
pdfs are not probabilities and may be greater than 1
in particular for a discrete \mathbf{Z}
$P_{\alpha Z}(\alpha z)=P_{Z}(z)$
but for continuous X
$P(\alpha X \leq x)=P\left(X \leq \frac{x}{\alpha}\right)=F_{X}\left(\frac{x}{\alpha}\right) \int_{-\infty}^{\frac{x}{\alpha}} f_{X}(t) d t$
so $f_{\alpha X}(x)=\frac{d F_{X}(x)}{d x}=\frac{1}{\alpha} f_{X}\left(\frac{x}{\alpha}\right)$

Continuous random variables

In general, for $Y=g(X)$

Get CDF of $Y: \quad F_{Y}(y)=\mathbf{P}(Y \leq y)$ Differentiate to get

$$
f_{Y}(y)=\frac{d F_{Y}}{d y}(y)
$$

X : uniform on $[0,2]$
Find pdf of $Y=X^{3}$

Solution:

$$
\begin{gather*}
F_{Y}(y)=\mathbf{P}(Y \leq y)=\mathbf{P}\left(X^{3} \leq y\right) \tag{1}\\
=\mathbf{P}\left(X \leq y^{1 / 3}\right)=\frac{1}{2} y^{1 / 3} \tag{2}\\
f_{Y}(y)=\frac{d F_{Y}}{d y}(y)=\frac{1}{6 y^{2 / 3}}
\end{gather*}
$$

Differential entropy

Differential entropy:

$$
\begin{equation*}
h(X)=\int_{-\infty}^{+\infty} f_{X}(x) \ln \left(\frac{1}{f_{X}(x)}\right) d x \tag{3}
\end{equation*}
$$

All definitions follow as before replacing P_{X} with f_{X} and summation with integration

$$
\begin{aligned}
& I(X ; Y) \\
= & \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f_{X, Y}(x, y) \ln \left(\frac{f_{X, Y}(x, y)}{f_{X}(x) f_{Y}(y)}\right) d x d y \\
= & D\left(f_{X, Y}(x, y) \| f_{X}(x) f_{Y}(y)\right) \\
= & h(Y)-h(Y \mid X) \\
= & h(X)-h(X \mid Y)
\end{aligned}
$$

Joint entropy is defined as

$$
h\left(\underline{X}^{n}\right)=-\int f_{\underline{X}^{n}}\left(\underline{x}^{n}\right) \ln \left(f_{\underline{X}^{n}}\left(\underline{x}^{n}\right)\right) d x_{1} \ldots d x_{n}
$$

Differential entropy

The chain rules still hold:
$h(X, Y)=h(X)+h(Y \mid X)=h(Y)+h(X \mid Y)$
$I((X, Y) ; Z)=I(X ; Z)+I(Y ; Z \mid Y)$
K-L distance $D\left(f_{X}(x) \| f_{Y}(y)\right)=\int f_{X}(x) \ln \left(\frac{f_{X}(x)}{f_{Y}(y)}\right)$ still remains non-negative in all cases

Conditioning still reduces entropy, because differential entropy is concave in the input (Jensen's inequality)

Let $f(x)=-x \ln (x)$ then

$$
\begin{aligned}
f^{\prime}(x) & =-x \frac{1}{x}-\ln (x) \\
& =-\ln (x)-1
\end{aligned}
$$

and

$$
f^{\prime \prime}(x)=-\frac{1}{x}<0
$$

for $x>0$.
Hence $I(X ; Y)=h(Y)-h(Y \mid X) \geq 0$

Differential entropy

$H(X) \geq 0$ always
and $H(X)=0$ for X a constant
Let us consider $h(X)$ for X constant
For X constant $f_{X}(x)=\delta(x)$

$$
\begin{equation*}
h(X)=\int_{-\infty}^{+\infty} f_{X}(x) \ln \left(\frac{1}{f_{X}(x)}\right) d x \tag{4}
\end{equation*}
$$

$h(X) \rightarrow-\infty$
Differential entropy is not always positive
See 9.3 for discussion of relation between discrete and differential entropy

Entropy under a transformation:
$h(X+c)=h(X)$
$h(\alpha X)=h(X)+\ln (|\alpha|)$

Maximizing entropy

For $H(Z)$, the uniform distribution maximized entropy, yielding $\log (|\mathcal{Z}|)$

The only constraint we had then was that the inputs be selected from the set \mathcal{Z}

We now seek a $f_{X}(x)$ that maximizes $h(X)$ subject to some set of constraints
$f_{X}(x) \geq 0$
$\int f_{X}(x) d x=1$
$\int f_{X}(x) r_{i}(x) d x=\alpha_{i}$ where $\left\{\left(r_{1}, \alpha_{1}\right), \ldots,\left(r_{m}, \alpha_{m}\right)\right\}$ is a set of constraints on X

Let us consider $f_{X}(x)=e^{\lambda_{0}-1+\sum_{i=1}^{m} \lambda_{i} r_{i}(x)}$. Let us show it achieves a maximum entropy

Maximizing entropy

Consider some other random variable Y with $f_{y}(y)$ pdf that satisfies the conditions but is not of the above form

$$
\begin{aligned}
& h(Y)=-\int f_{Y}(x) \ln \left(f_{Y}(x)\right) d x \\
= & -\int f_{Y}(x) \ln \left(\frac{f_{Y}(x)}{f_{X}(x)} f_{X}(x)\right) d x \\
= & -D\left(f_{Y} \| f_{X}\right)-\int f_{Y}(x) \ln \left(f_{X}(x)\right) d x \\
\leq & -\int f_{Y}(x) \ln \left(f_{X}(x)\right) d x \\
= & -\int f_{Y}(x)\left(\lambda_{0}-1+\sum_{i=1}^{m} \lambda_{i} r_{i}(x)\right) d x \\
= & -\int f_{X}(x)\left(\lambda_{0}-1+\sum_{i=1}^{m} \lambda_{i} r_{i}(x)\right) d x \\
= & h(X)
\end{aligned}
$$

Special case: for a given variance, a Gaussian distribution maximizes entropy

For $X \sim N\left(0, \sigma^{2}\right), h(X)=\frac{1}{2} \ln \left(2 \pi e \sigma^{2}\right)$

Entropy rate and Burg's theorem

The differential entropy rate of a stochastic process $\left\{X_{i}\right\}$ is defined to be $\lim _{n \rightarrow \infty} \frac{h\left(\frac{X^{n}}{n}\right)}{n}$ if it exists

In the case of a stationary process, we can show that the differential entropy rate is $\lim _{n \rightarrow \infty} h\left(X_{n} \mid \underline{X}^{n-1}\right)$

The maximum entropy rate stochastic process $\left\{X_{i}\right\}$ satisfying the constraints $E\left[X_{i} X_{i+k}\right]=$ $\alpha_{k}, k=0,1, \ldots, p, \forall i$ is the $p^{t h}$ order GaussMarkov process of the form

$$
X_{i}=-\sum_{k=1}^{p} a_{k} X_{i-k}+\Xi_{i}
$$

where the $\bar{\Xi}_{i}$ s are IID $\sim N\left(0, \sigma^{2}\right)$, independent of past X s and $a_{1}, a_{2}, \ldots, a_{p}, \sigma^{2}$ are chosen to satisfy the constraints

In particular, let X_{1}, \ldots, X_{n} satisfy the constraints and let Z_{1}, \ldots, Z_{n} be a Gaussian process with the same covariance matrix as X_{1}, \ldots, X_{n}. The entropy of \underline{Z}^{n} is at least as great as that of \underline{X}^{n}.

Entropy rate and Burg's theorem

Facts about Gaussians:

- we can always find a Gaussian with any arbitrary autocorrelation function
- for two jointly Gaussian random variables \underline{X} and \underline{Y} with an arbitrary covariance, we can always express $\underline{Y}=\mathbf{A} \underline{X}+\underline{Z}$ for some matrix \mathbf{A} and \underline{Z} independent of \underline{X}
- if Y and X are jointly Gaussian random variables and $Y=X+Z$ then Z must also be
- a Gaussian random vector \underline{X}^{n} has pdf

$$
\begin{aligned}
& f_{\underline{X}^{n}}\left(\underline{x}^{n}\right)=\frac{1}{\left(\sqrt{2 \pi}\left|\Lambda_{\underline{X}^{n}}\right|\right)^{n}} \\
& e^{-\frac{1}{2}\left(\underline{x}^{n}-\underline{\mu}_{X^{n}}\right)^{T} \Lambda_{\underline{X}^{n}}^{-1}\left(\underline{x}^{n}-\underline{\mu}_{X^{\prime}}\right)}
\end{aligned}
$$

where \wedge and μ denote autocovariance and mean, respectively

- The entropy is $h\left(\underline{X}^{n}\right)=\frac{1}{2} \ln \left((2 \pi e)^{n}\left|\wedge_{\underline{X}^{n}}\right|\right)$

Entropy rate and Burg's theorem

The constraints $E\left[X_{i} X_{i+k}\right]=\alpha_{k}, k=0,1, \ldots, p$, $\forall i$ can be viewed as an autocorrelation constraint

By selecting the $a_{i} \mathrm{~s}$ according to the YuleWalker equations, that give $p+1$ equations ion $p+1$ unknowns
$R(0)=-\sum_{k=1}^{p} a_{k} R(-k)+\sigma^{2}$
$R(l)=-\sum_{k=1}^{p} a_{k} R(l-k)$
(recall that $R(k)=R(-k)$) we can solve for $a_{1}, a_{2}, \ldots, a_{p}, \sigma^{2}$

What is the entropy rate?

$$
\begin{aligned}
h\left(\underline{X}^{n}\right) & =\sum_{i=1}^{n} h\left(X_{i} \mid \underline{X}^{i-1}\right) \\
& =\sum_{i=1}^{n} h\left(X_{i} \mid \underline{X}_{i-p}^{i-1}\right) \\
& =\sum_{i=1}^{n} h\left(\bar{\Xi}_{i}\right)
\end{aligned}
$$

AEP

WLLN still holds:
$-\frac{1}{n} \ln \left(f_{\underline{X}^{n}}\left(\underline{x}^{n}\right)\right) \rightarrow-E\left[\ln \left(f_{X}(x)\right)\right]=h(X)$
in probability for X_{i} s IID

Define $\operatorname{Vol}(A)=\int_{A} d x_{1} \ldots d x_{n}$

Define the typical set $A_{\epsilon}^{(n)}$ as:
$\left\{\left(x_{1}, \ldots, x_{n}\right)\right.$ s.t. $\left.\left|-\frac{1}{n} \ln \left(f_{\underline{X}^{n}}\left(\underline{x}^{n}\right)\right)-h(X)\right| \leq \epsilon\right\}$

By the WLLN, $P\left(A_{\epsilon}^{(n)}\right)>1-\epsilon$ for n large enough

DEP

$$
\begin{array}{r}
1=\int f_{\underline{X}^{n}}\left(\underline{x}^{n}\right) d x_{1} \ldots d x_{n} \\
1 \geq \int_{A_{\epsilon}^{(n)}} e^{-n(h(X)+\epsilon)} d x_{1} \ldots d x_{n} \\
e^{n(h(X)+\epsilon)} \geq \operatorname{Vol}\left(A_{\epsilon}^{(n)}\right)
\end{array}
$$

For n large enough, $P\left(A_{\epsilon}^{(n)}\right)>1-\epsilon$ so

$$
\begin{array}{r}
1-\epsilon \leq \int_{A_{\epsilon}^{(n)}} f_{\underline{X}^{n}}\left(\underline{x}^{n}\right) d x_{1} \ldots d x_{n} \\
1-\epsilon \leq \int_{A_{\epsilon}^{(n)}} e^{-n(h(X)-\epsilon)} d x_{1} \ldots d x_{n} \\
1-\epsilon \leq \operatorname{Vol}\left(A_{\epsilon}^{(n)}\right) e^{-n(h(X)-\epsilon)}
\end{array}
$$

MIT OpenCourseWare
http://ocw.mit.edu

6.441 Information Theory

Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

