Spring 2016

6.441 - Information Theory

 Homework 1Due: Tue, Feb 9, 2016 (in class)
Prof. Y. Polyanskiy

1 Reading (optional)

1. Read [2, Chapter 1]
2. Read [3]

2 Exercises

NOTE: Each exercise is 10 points. Only 3 exercises per assignment will be graded. If you submit more than 3 solved exercises please indicate which ones you want to be graded.

1 Bob is to eat all the cookies from a jar containing three peanut butter, two chocolate, and one oatmeal cookies. He decides to proceed completely randomly. Denote by X and Y the flavor of the first and the second cookie he eats.

1. Find $H(X), H(Y), H(X, Y), H(Y \mid X), H(X \mid Y), I(X ; Y), D\left(P_{Y \mid X=\text { chocolate }} \| P_{Y \mid X=\text { oatmeal }}\right)$ and $D\left(P_{Y \mid X=\text { oatmeal }} \| P_{Y \mid X=\text { chocolate }}\right)$.
2. Now, what if Y denotes the flavor of the last cookie Bob eats?
3. How much information is provided by the sequence in which the cookies are eaten?
$\mathbf{2}$ Let $\mathcal{N}(\mathbf{m}, \boldsymbol{\Sigma})$ be the Gaussian distribution on \mathbb{R}^{n} with mean $\mathbf{m} \in \mathbb{R}^{n}$ and covariance matrix $\boldsymbol{\Sigma}$.
4. Under what conditions on $\mathbf{m}_{0}, \boldsymbol{\Sigma}_{0}, \mathbf{m}_{1}, \boldsymbol{\Sigma}_{1}$ is

$$
D\left(\mathcal{N}\left(\mathbf{m}_{1}, \boldsymbol{\Sigma}_{1}\right) \| \mathcal{N}\left(\mathbf{m}_{0}, \boldsymbol{\Sigma}_{0}\right)\right)<\infty
$$

2. Compute $D\left(\mathcal{N}(\mathbf{m}, \boldsymbol{\Sigma}) \| \mathcal{N}\left(0, \mathbf{I}_{n}\right)\right)$, where \mathbf{I}_{n} is the $n \times n$ identity matrix.
3. Compute $D\left(\mathcal{N}\left(\mathbf{m}_{1}, \boldsymbol{\Sigma}_{1}\right) \| \mathcal{N}\left(\mathbf{m}_{0}, \boldsymbol{\Sigma}_{0}\right)\right)$ for a non-singular $\boldsymbol{\Sigma}_{\mathbf{0}}$. (Hint: think how Gaussian distribution changes under shifts $\mathbf{x} \mapsto \mathbf{x}+\mathbf{a}$ and non-singular linear transformations $\mathbf{x} \mapsto \mathbf{A x}$. Apply data-processing to reduce to previous case.)

3 Recall that $d(p \| q)=D(\operatorname{Bern}(p) \| \operatorname{Bern}(q))$ denotes the binary divergence function:

$$
d(p \| q)=p \log \frac{p}{q}+(1-p) \log \frac{1-p}{1-q} .
$$

1. Prove for all $p, q \in[0,1]$

$$
d(p \| q) \geq 2(p-q)^{2} \log e
$$

Note: Proof by drawing is NOT accepted.
2. Apply data processing inequality to prove the Pinsker-Csiszár inequality:

$$
\mathrm{TV}(P, Q) \leq \sqrt{\frac{1}{2 \log e} D(P \| Q)},
$$

where $\operatorname{TV}(P, Q)$ is the total variation distance between probability distribution P and Q :

$$
\operatorname{TV}(P, Q) \triangleq \sup _{E}(P[E]-Q[E])
$$

with the supremum taken over all events E.
4 (Information lost in erasures) Let X, Y be a pair of random variables with $I(X ; Y)<\infty$. Let Z be obtained from Y by passing the latter through an erasure channel, i.e., $X \rightarrow Y \rightarrow Z$ where

$$
P_{Z \mid Y}(z \mid y)= \begin{cases}1-\delta, & z=y \\ \delta, & z=?\end{cases}
$$

where ? is a symbol not in the alphabet of Y. Find $I(X ; Z)$.
5 1. Someone arranged a set of n points in \mathbb{R}^{3} in such a way that any of its projections on $x y$, $x z$ and $y z$-planes has cardinality m. Obviosly, $m \leq n$. Show that also

$$
\begin{equation*}
n \leq m^{\frac{3}{2}} \tag{1}
\end{equation*}
$$

(Hint: Han's inequality)
2. Show that when \sqrt{m} is integer there exists a configuration achieving (1) with equality.
3. More generally, prove Shearer's lemma: For n points in \mathbb{R}^{3} let m_{1}, m_{2}, m_{3} denote the number of distinct points projected onto the $x y, x z$ and $y z$-plane, respectively. Then:

$$
\begin{equation*}
n \leq \sqrt{m_{1} m_{2} m_{3}} . \tag{2}
\end{equation*}
$$

Comments: This is an example of an information-theoretic proof of a combinatorial result.
6 Let (X, Y) be uniformly distributed inside the unit circle $\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$.

1. Are they independent? Explain your answer.
2. Compute $I(X ; Y)$.

References

[1] C. E. Shannon, "A Mathematical Theory of Communication", Bell Syst. Tech. J., pp. 379-423, 623-656, vol. 27, Jul.-Oct. 1948.
[2] T. Cover and J. Thomas, Elements of Information Theory, Second Edition, Wiley, 2006
[3] Solomon W. Golomb, Elwyn Berlekamp, Thomas M. Cover, Robert G. Gallager, James L. Massey, and Andrew J. Viterbi, Claude Elwood Shannon (1916-2001), NOTICES OF THE AMS, Vol. 49, No. 1, 2002

MIT OpenCourseWare
https://ocw.mit.edu

6.441 Information Theory

Spring 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

