
Spring 2016

6.441 - Information Theory

Homework 1

Due: Tue, Feb 9, 2016 (in class)
Prof. Y. Polyanskiy

1 Reading (optional)

1. Read [2, Chapter 1]

2. Read [3]

2 Exercises

NOTE: Each exercise is 10 points. Only 3 exercises per assignment will be graded. If you
submit more than 3 solved exercises please indicate which ones you want to be graded.

1 Bob is to eat all the cookies from a jar containing three peanut butter, two chocolate, and one
oatmeal cookies. He decides to proceed completely randomly. Denote by X and Y the flavor
of the first and the second cookie he eats.

1. FindH(X), H(Y ), H(X,Y ), H(Y |X), H(X|Y ), I(X;Y ),D(PY |X=chocolate||PY |X=oatmeal)
and D(PY |X=oatmeal||PY |X=chocolate).

2. Now, what if Y denotes the flavor of the last cookie Bob eats?

3. How much information is provided by the sequence in which the cookies are eaten?

2 Let N (m,Σ) be the Gaussian distribution on n n
R with mean m ∈ R and covariance matrix Σ.

1. Under what conditions on m0,Σ0,m1,Σ1 is

D( N (m1,Σ1) || N (m0,Σ0) ) < ∞

2. Compute D(N (m,Σ)||N (0, In)), where In is the n× n identity matrix.

3. Compute D( N (m1,Σ1) || N (m0,Σ0) ) for a non-singular Σ0. (Hint: think how Gaus-
sian distribution changes under shifts x 7→ x+a and non-singular linear transformations
x 7→ Ax. Apply data-processing to reduce to previous case.)

3 Recall that d(p||q) = D(Bern(p)||Bern(q)) denotes the binary divergence function:

p
d(p||q) = p log

q
+ (1− p) log

1− p
.

1− q

1. Prove for all p, q ∈ [0, 1]
d(p||q) ≥ 2(p − q)2 log e .

Note: Proof by drawing is NOT accepted.
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2. Apply data processing inequality to prove the Pinsker-Csiszár inequality :

TV(P,Q) ≤
√

1
D(P

2 log e
||Q) ,

where TV(P,Q) is the total variation distance between probability distribution P and
Q:

△
TV(P,Q) = sup (P [E]

E

−Q[E]) ,

with the supremum taken over all events E.

4 (Information lost in erasures) Let X,Y be a pair of random variables with I(X;Y ) < ∞. Let
Z be obtained from Y by passing the latter through an erasure channel, i.e., X → Y → Z

where
1 δ, z = y ,

PZ|Y (z|y) =
{

−
δ, z =?

where ? is a symbol not in the alphabet of Y . Find I(X;Z).

5 1. Someone arranged a set of n points in 3
R in such a way that any of its projections on xy,

xz and yz-planes has cardinality m. Obviosly, m ≤ n. Show that also

n ≤ 3

m 2 (1)

(Hint: Han’s inequality)

2. Show that when
√
m is integer there exists a configuration achieving (1) with equality.

3. More generally, prove Shearer’s lemma: For n points in 3
R let m1,m2,m3 denote the

number of distinct points projected onto the xy, xz and yz-plane, respectively. Then:

n
√≤ m1m2m3 . (2)

Comments: This is an example of an information-theoretic proof of a combinatorial result.

6 Let (X,Y ) be uniformly distributed inside the unit circle {(x, y) : x2 + y2 ≤ 1}.

1. Are they independent? Explain your answer.

2. Compute I(X;Y ).
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