
Spring 2016

6.441 - Information Theory

Homework 4

Due: Thur, Mar 3, 2016 (in class)
Prof. Y. Polyanskiy

1 Reading (optional)

1. Read [1, Chapters 5,6,13]

2 Exercises

NOTE: Each exercise is 10 points. Only 3 exercises per assignment will be graded. If you
submit more than 3 solved exercises please indicate which ones you want to be graded.

1 Consider the conditional distribution PY m|X : [0, 1] 7→ {0, 1}m, where given x ∈ [0, 1], Y m is i.i.d.
Bern(x). Define the capacity:

△
C(m) = max I(X;Y m).

PX

Our goal is to show that C(m) = 1 logm+O(1).2

1. Let S = m
i Y=1 i. Prove that C(m) = maxPX

I(X;S).

2. Show tha

∑

t
C(m) = min sup D(Binom(m,x)

QS 0≤x≤1
||QS).

where QS is a distribution on {0, . . . ,m}. Hint: Capacity saddle point, be sure to check
conditions!

3. Choosing uniform QS show C(m) ≤ 1
2 logm+O(1) as m → ∞.

4. Choosing uniform PX show C(m) ≥ 1
2 logm+O(1) asm → ∞. Hint: ShowH(Binom(n,p)) =

1 log(np(1− p)) +O(1) with O(1) uniform in p2 ∈ [0, 1].

2 Consider a ternary fixed length (almost lossless) compression X → {0, 1, 2}k with an additional
requirement that the string in wk ∈ {0, 1, 2}k should satisfy

k
∑ k

wj

j=1

≤ (1)
2

For example, (0, 0, 0, 0), (0, 0, 0, 2) and (1, 1, 0, 0) satisfy the constraint but (0, 0, 1, 2) does
not.

Let ǫ∗(Sn, k) denote the minimum probability of error among all possible compressors of
Sn = {Sj , j = 1, . . . , n} with i.i.d. entries of finite entropy H(S) < ∞. Compute

lim ∗ǫ (Sn, nR)
n→∞

as a function of R ≥ 0.

Hint : Relate to P[ℓ(f∗(Sn)) ≥ γn] and use Stirling’s formula (or Theorems 11.1.1, 11.1.3
in [1]) to find γ.
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3 Consider a particle walking randomly on the graph with 4 nodes as shown below:
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(each edge is taken with equal probability; particle does not stay in the same node). Alice
observes the X coordinate and Bob observes the Y coordinate. How many bits per step (in
the long run) does Bob need to send to Alice so that Alice will be able to reconstruct the
particle’s trajectory with vanishing probability of error?

4 Mismatched compression. Let P,Q be distributions on some discrete alphabet A.

1. Let f∗
P : A 7→ {0, 1} denote the optimal variable-length lossless compressor for X ∼ P .

Show that under Q,
EQ[l(

∗fP (X))] ≤ H(Q) +D(Q P ).
∞

||
Hint : For any positive random variable U , E [U ] =

∫

P [U ≥ u] du.0

2. The Shannon code for X ∼ P is a prefix code fP with the code length l(fP (a)) =
⌈log 1

2 ⌉, a ∈ A. Show that if X is distributed according to Q instead, then
P (a)

H(Q) +D(Q||P ) ≤ EQ[l(fP (X))] ≤ H(Q) +D(Q||P ) + 1 bit.

5 Krichevsky-Trofimov codes. From Kraft’s inequality we know that any probability distribution

QXn on {0, 1}n gives rise to a prefix code f such that l(f(xn)) =
⌈

log 1
2 f r( nn

o all xn.
QX x )

Consider the following QXn defined by the factorization QXn = QX1
QX |

⌉

2 X1
· · ·QXn|Xn−1,

1
QX1

(1) =
2
, QXt+1|Xt(1|xt) = n1(x

t) + 1
2 , (2)

t+ 1

where n1(x
t) denotes the number of ones in xt. Denote the prefix code corresponding to this

QXn by fKT : {0, 1}n → {0, 1}∗.

1. Prove that for any n and any xn ∈ {0, 1}n,

QXn(xn
1

) ≥
2

1√
n0 + n1

(

n0

n0 + n1

)n0
(

n1
n

n0 + n1

)

1

.

where n0 = n n n
0(x ) and n1 = n1(x ) denote the number of zeros and ones in xn.

Hint: Use induction on n.

2. Conclude that the K-T code length satisfies:

1
l(fKT(

n)) ≤ nh
(n

x
n

)

+
1
log n+ 1, ∀xn ∈ {0, 1}n.

2

3. Conclude that for K-T codes :

n 1
sup

0≤θ≤1
{E [l(fKT(Sθ ))]− nh(θ)} ≤ log n+O(1).

2

This value is known as the 1redundancy of a universal code. It turns out that 2 log n+O(1)
is optimal for the class of all Bernoulli sources (see lectures).
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Comments:

1. The probability assignment (2) is known as the “add-1” estimator: Upon observing xt2
which contains n1 number of ones, a natural probability assignment to xt+1 = 1 is the

empirical average n1

t
. Instead, K-T codes assign probability

n1+
1

2

t+1 , or equivalently, adding
1 to both n0 and n1. This is a crucial modification to Laplace’s “add-one estimator”.12

2. By construction, the probability assignment QXn can be sequentially computed, which
allows us implement sequential encoding and encode a stream of bits on the fly. This is
a highly desirable feature of the K-T codes. Of course, we need to resort to construction
other than the one in Kraft’s inequality construction, e.g., arithmetic coding.

6 (Combinatorial meaning of conditional entropy)

1 Fix n ≥ 1, a sequence xn ∈ X n and define

Nxn(a, b) = |{(xi, xi+1) : xi = a, xi+1 = b, i = 1, . . . , n}| ,

where we define xn+1 = x 1
1 (cyclic continuation). Show that Nxn

n
(·, ·) defines a prob-

ability distribution PA,B on X × X with equal marginals PA = PB . Conclude that
H(A|B) = H(B|A).

(2)
2 Let Txn (Markov type-class of xn) be defined as

(2)
T n n

n nxn = {x̃ ∈ X : Nx̃ = Nx } .

(2)
Show that elements of Txn can be identified with cycles in the complete directed graph
G on X , such that for each (a, b) ∈ X ×X the cycle passes Nxn(a, b) times through edge
(a, b).

3 Show that each such cycle can be uniquely specified by indentifying the first node and
by choosing at each vertex of the graph the order in which the outgoing edges are taken.
From this and Stirling’s approximation conclude that

log | (2)
Txn | = nH(xT+1|xT ) +O(log n) , T ∼ Unif[n] .

Check that H(xT+1|xT ) = H(A|B) = H(B|A).
4 Show that for any stationary Markov chain Xn we have

(2)
log PXn(Xn ∈ Txn ) = −nD(PB|A‖PX2|X1

|PA) +O(log n) .
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1For interesting readers, see Laplace’s rule of succession and the sunrise problem https://en.wikipedia.org/

wiki/Rule_of_succession.
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