Spring 2016 6.441 - Information Theory Homework 5 Due: Thur, Mar 3, 2016 (in class) Prof. Y. Polyanskiy

1 Reading (optional)

1. Read [1, Chapters 11,13]

2 Exercises

NOTE: Each exercise is 10 points. Only 3 exercises per assignment will be graded. If you submit more than 3 solved exercises please indicate which ones you want to be graded.

1 Consider a probability measure \mathbb{P} and a measure-preserving transformation $\tau : \Omega \to \Omega$. Prove: τ -ergodic iff for any measurable A, B we have

$$\frac{1}{n}\sum_{k=0}^{n-1}\mathbb{P}[A\cap\tau^{-k}B]\to\mathbb{P}[A]\mathbb{P}[B].$$

Comment: Thus ergodicity is a weaker condition than mixing: $\mathbb{P}[A \cap \tau^{-n}B] \to \mathbb{P}[A]\mathbb{P}[B]$.

2 Consider a three-state Markov chain S_1, S_2, \ldots with the following transition probability matrix

$$\mathbf{P} = \begin{bmatrix} \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\ 0 & \frac{1}{2} & \frac{1}{2} \\ 1 & 0 & 0 \end{bmatrix}.$$

Compute the limit of $\frac{1}{n}\mathbb{E}[l(f^*(S^n))]$ when $n \to \infty$. Does your answer depend on the distribution of the initial state S_1 ?

- **3** Enumerative Codes. Consider the following simple universal compressor for binary sequences: Given $x^n \in \{0,1\}^n$, denote by $n_1 = \sum_{i=1}^n x_i$ and $n_0 = n - n_1$ the number of ones and zeros in x^n . First encode $n_1 \in \{0, 1, \dots, n\}$ using $\lceil \log_2(n+1) \rceil$ bits, then encode the index of x^n in the set of all strings with n_1 number of ones using using $\lceil \log_2 \binom{n}{n_1} \rceil$ bits. Concatenating two binary strings, we obtain the codeword of x^n . This defines a lossless compressor $f : \{0, 1\}^n \to \{0, 1\}^*$.
 - 1. Verify that f is a prefix code.
 - 2. Let $S^{n}_{\theta} \stackrel{\text{i.i.d.}}{\sim} \text{Bern}(\theta)$. Show that for any $\theta \in [0, 1]$,

$$\mathbb{E}\left[l(f(S_{\theta}^{n}))\right] \le nh(\theta) + \log n + O(1),$$

where $h(\cdot)$ is the binary entropy function. Conclude that the average code length $\frac{1}{n}\mathbb{E}\left[l(f(S^n_{\theta}))\right]$ achieves the entropy simultaneously for all θ , as $n \to \infty$.

3. Show that

$$\sup_{0 \le \theta \le 1} \{ \mathbb{E} \left[l(f(S_{\theta}^n)) \right] - nh(\theta) \} \ge \log n + O(1).$$

Compare with the performance of the optimal universal codes. [Optional: Explain why enumerative coding fails to achieve the optimal redundancy.]

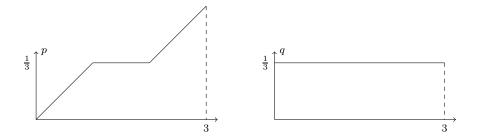


Figure 1: Figure for Exercise 6.

Hint: The following non-asymptotic version of Stirling approximation *might* be useful

$$1 \le \frac{n!}{\sqrt{2\pi n} \left(\frac{n}{e}\right)^n} \le \frac{e}{\sqrt{2\pi}}, \quad \forall n \in \mathbb{N}.$$

4 Let P_0 and P_1 be distributions on \mathcal{X} . Recall that the region of achievable pairs $(P_0[Z=0], P_1[Z=0])$ via randomized tests $P_{Z|X} : \mathcal{X} \to \{0,1\}$ is denoted

$$\mathcal{R}(P_0, P_1) \stackrel{\triangle}{=} \bigcup_{P_{Z|X}} (P_0[Z=0], P_1[Z=0]) \subseteq [0,1]^2.$$

Let also $P_{Y|X} : \mathcal{X} \to \mathcal{Y}$ be a random transformation, which carries P_j to Q_j according to $P_j \xrightarrow{P_{Y|X}} Q_j, j = 0, 1$. Compare the regions $\mathcal{R}(P_0, P_1)$ and $\mathcal{R}(Q_0, Q_1)$. What does this say about $\beta_{\alpha}(P_0, P_1)$ vs. $\beta_{\alpha}(Q_0, Q_1)$?

Comment: This is the most general form of data-processing, all the other ones (divergence, mutual information, f-divergence, total-variation, Rényi-divergence, etc) are corollaries.

5 Let P_0 and P_1 be two distributions on a finite alphabet \mathcal{X} such that $P_0 \sim P_1$ (that is, $P_0(x) > 0 \iff P_1(x) > 0$). Denote the loglikehood ratio by

$$F = \log \frac{P_0(X)}{P_1(X)}$$

Denote by P_{F_0} and P_{F_1} the distribution of F under P_0 and P_1 , resp. (That is, P_{F_0}, P_{F_1} are distributions on \mathbb{R}).

- 1. Can distribution P_{F_1} be recovered from P_{F_0} ?
- 2. What are the general properties of P_{F_0} ? (list as many as possible)
- 3. Given a distribution Q on \mathbb{R} with such properties can you define P_0 and P_1 such that $P_{F_0} = Q$?
- **6** Consider distribution P and Q with the density in Fig. 1.
 - 1. Compute the expression of $\beta_{\alpha}(P,Q)$.
 - 2. Plot the region $\mathcal{R}(P,Q)$.
 - 3. Specify the tests achieving β_{α} for $\alpha = 5/6$ and $\alpha = 1/2$, respectively.

References

[1] T. Cover and J. Thomas, *Elements of Information Theory*, Second Edition, Wiley, 2006

6.441 Information Theory Spring 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.