
Spring 2016

6.441 - Information Theory

Homework

Due: Thur, Mar 3, 2016 (in class)
Prof. Y. Polyanskiy

1 Reading (optional)

1. Read [1, Chapters 11,13]

2 Exercises

NOTE: Each exercise is 10 points. Only 3 exercises per assignment will be graded. If you
submit more than 3 solved exercises please indicate which ones you want to be graded.

1 Consider a probability measure P and a measure-preserving transformation τ : Ω → Ω. Prove:
τ -ergodic iff for any measurable A,B we have

1
n−1
∑

P[A τ−kB] P[A]P[B] .
n

k=0

∩ →

Comment: Thus ergodicity is a weaker condition than mixing: P[A ∩ τ−nB] → P[A]P[B].

2 Consider a three-state Markov chain S1, S2, . . . with the following transition probability matrix
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Compute the limit of 1 ∗ n
E[l(f (S ))] when n → ∞. Does your answer depend on the distri-

n

bution of the initial state S1?

3 Enumerative Codes. Consider the following simple universal compressor for binary sequences:
Given xn ∈ {0, 1}n, denote by n1 =

∑n
i xi and n0 1=1

= n−n the number of ones and zeros in
xn. First encode n1 ∈ {0, 1, . . . , n} using ⌈log2(n+ 1)⌉ bits, then encode the index of xn in the

set of all strings with n1 number of ones using using
⌈

log2
(

n
n1

)

⌉

bits. Concatenating two binary

strings, we obtain the codeword of xn. This defines a lossless compressor f : {0, 1}n → {0, 1}∗.

1. Verify that f is a prefix code.
i.i.d.

2. Let Sn
θ ∼ Bern(θ). Show that for any θ ∈ [0, 1],

n
E [l(f(Sθ ))] ≤ nh(θ) + log n+O(1),

where h(·) is the binary entropy function. Conclude that the average code length
1 n
E

n
[l(f(Sθ ))] achieves the entropy simultaneously for all θ, as n → ∞.

3. Show that
sup { (Sn

E [l(f θ ))] nh(θ) log n+O(1).
0≤θ≤1

− } ≥

Compare with the performance of the optimal universal codes.

[Optional: Explain why enumerative coding fails to achieve the optimal redundancy.]
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Figure 1: Figure for Exercise 6.

Hint : The following non-asymptotic version of Stirling approximation might be useful

n!
1 ≤ √

2πn
(

n
e

)n ≤ e√ ,
2π

∀n ∈ N.

4 Let P0 and P1 be distributions on X . Recall that the region of achievable pairs (P0[Z = 0], P1[Z =
0]) via randomized tests PZ|X : X → {0, 1} is denoted

R △
(P0, P1) =

⋃

(P0[Z = 0], P 2
1[Z = 0]) ⊆ [0, 1] .

PZ|X

Let also PY |X : X → Y be a random transformation, which carries Pj to Qj according to
PY |X

Pj −−−→ Qj, j = 0, 1. Compare the regions R(P0, P1) and R(Q0, Q1). What does this say
about βα(P0, P1) vs. βα(Q0, Q1)?

Comment: This is the most general form of data-processing, all the other ones (divergence,
mutual information, f -divergence, total-variation, Rényi-divergence, etc) are corollaries.

5 Let P0 and P1 be two distributions on a finite alphabet X such that P0 ∼ P1 (that is, P0(x) >
0 ⇐⇒ P1(x) > 0). Denote the loglikehood ratio by

P0(X)
F = log .

P1(X)

Denote by PF0
and PF1

the distribution of F under P0 and P1, resp. (That is, PF0
, PF1

are
distributions on R).

1. Can distribution PF1
be recovered from PF0

?

2. What are the general properties of PF0
? (list as many as possible)

3. Given a distribution Q on R with such properties can you define P0 and P1 such that
PF0

= Q?

6 Consider distribution P and Q with the density in Fig. 1.

1. Compute the expression of βα(P,Q).

2. Plot the region R(P,Q).

3. Specify the tests achieving βα for α = 5/6 and α = 1/2, respectively.
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