Spring 2016

6.441 - Information Theory Homework 5

Due: Thur, Mar 3, 2016 (in class)
Prof. Y. Polyanskiy

1 Reading (optional)

1. Read [1, Chapters 11,13]

2 Exercises

NOTE: Each exercise is 10 points. Only 3 exercises per assignment will be graded. If you submit more than 3 solved exercises please indicate which ones you want to be graded.

1 Consider a probability measure \mathbb{P} and a measure-preserving transformation $\tau: \Omega \rightarrow \Omega$. Prove: τ-ergodic iff for any measurable A, B we have

$$
\frac{1}{n} \sum_{k=0}^{n-1} \mathbb{P}\left[A \cap \tau^{-k} B\right] \rightarrow \mathbb{P}[A] \mathbb{P}[B]
$$

Comment: Thus ergodicity is a weaker condition than mixing: $\mathbb{P}\left[A \cap \tau^{-n} B\right] \rightarrow \mathbb{P}[A] \mathbb{P}[B]$.
2 Consider a three-state Markov chain S_{1}, S_{2}, \ldots with the following transition probability matrix

$$
\mathbf{P}=\left[\begin{array}{ccc}
\frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\
0 & \frac{1}{2} & \frac{1}{2} \\
1 & 0 & 0
\end{array}\right]
$$

Compute the limit of $\frac{1}{n} \mathbb{E}\left[l\left(f^{*}\left(S^{n}\right)\right)\right]$ when $n \rightarrow \infty$. Does your answer depend on the distribution of the initial state S_{1} ?

3 Enumerative Codes. Consider the following simple universal compressor for binary sequences: Given $x^{n} \in\{0,1\}^{n}$, denote by $n_{1}=\sum_{i=1}^{n} x_{i}$ and $n_{0}=n-n_{1}$ the number of ones and zeros in x^{n}. First encode $n_{1} \in\{0,1, \ldots, n\}$ using $\left\lceil\log _{2}(n+1)\right\rceil$ bits, then encode the index of x^{n} in the set of all strings with n_{1} number of ones using using $\left[\log _{2}\binom{n}{n_{1}}\right\rceil$ bits. Concatenating two binary strings, we obtain the codeword of x^{n}. This defines a lossless compressor $f:\{0,1\}^{n} \rightarrow\{0,1\}^{*}$.

1. Verify that f is a prefix code.
2. Let $S_{\theta}^{n \text { i.i.d. }} \sim \operatorname{Bern}(\theta)$. Show that for any $\theta \in[0,1]$,

$$
\mathbb{E}\left[l\left(f\left(S_{\theta}^{n}\right)\right)\right] \leq n h(\theta)+\log n+O(1),
$$

where $h(\cdot)$ is the binary entropy function. Conclude that the average code length $\frac{1}{n} \mathbb{E}\left[l\left(f\left(S_{\theta}^{n}\right)\right)\right]$ achieves the entropy simultaneously for all θ, as $n \rightarrow \infty$.
3. Show that

$$
\sup _{0 \leq \theta \leq 1}\left\{\mathbb{E}\left[l\left(f\left(S_{\theta}^{n}\right)\right)\right]-n h(\theta)\right\} \geq \log n+O(1)
$$

Compare with the performance of the optimal universal codes.
[Optional: Explain why enumerative coding fails to achieve the optimal redundancy.]

Figure 1: Figure for Exercise 6.

Hint: The following non-asymptotic version of Stirling approximation might be useful

$$
1 \leq \frac{n!}{\sqrt{2 \pi n}\left(\frac{n}{\mathrm{e}}\right)^{n}} \leq \frac{\mathrm{e}}{\sqrt{2 \pi}}, \quad \forall n \in \mathbb{N}
$$

4 Let P_{0} and P_{1} be distributions on \mathcal{X}. Recall that the region of achievable pairs ($P_{0}[Z=0], P_{1}[Z=$ $0]$) via randomized tests $P_{Z \mid X}: \mathcal{X} \rightarrow\{0,1\}$ is denoted

$$
\mathcal{R}\left(P_{0}, P_{1}\right) \triangleq \bigcup_{P_{Z \mid X}}\left(P_{0}[Z=0], P_{1}[Z=0]\right) \subseteq[0,1]^{2}
$$

Let also $P_{Y \mid X}: \mathcal{X} \rightarrow \mathcal{Y}$ be a random transformation, which carries P_{j} to Q_{j} according to $P_{j} \xrightarrow{P_{Y \mid X}} Q_{j}, j=0,1$. Compare the regions $\mathcal{R}\left(P_{0}, P_{1}\right)$ and $\mathcal{R}\left(Q_{0}, Q_{1}\right)$. What does this say about $\beta_{\alpha}\left(P_{0}, P_{1}\right)$ vs. $\beta_{\alpha}\left(Q_{0}, Q_{1}\right)$?

Comment: This is the most general form of data-processing, all the other ones (divergence, mutual information, f-divergence, total-variation, Rényi-divergence, etc) are corollaries.

5 Let P_{0} and P_{1} be two distributions on a finite alphabet \mathcal{X} such that $P_{0} \sim P_{1}$ (that is, $P_{0}(x)>$ $\left.0 \Longleftrightarrow P_{1}(x)>0\right)$. Denote the loglikehood ratio by

$$
F=\log \frac{P_{0}(X)}{P_{1}(X)} .
$$

Denote by $P_{F_{0}}$ and $P_{F_{1}}$ the distribution of F under P_{0} and P_{1}, resp. (That is, $P_{F_{0}}, P_{F_{1}}$ are distributions on \mathbb{R}).

1. Can distribution $P_{F_{1}}$ be recovered from $P_{F_{0}}$?
2. What are the general properties of $P_{F_{0}}$? (list as many as possible)
3. Given a distribution Q on \mathbb{R} with such properties can you define P_{0} and P_{1} such that $P_{F_{0}}=Q$?

6 Consider distribution P and Q with the density in Fig. 1.

1. Compute the expression of $\beta_{\alpha}(P, Q)$.
2. Plot the region $\mathcal{R}(P, Q)$.
3. Specify the tests achieving β_{α} for $\alpha=5 / 6$ and $\alpha=1 / 2$, respectively.

References

[1] T. Cover and J. Thomas, Elements of Information Theory, Second Edition, Wiley, 2006

MIT OpenCourseWare
https://ocw.mit.edu

6.441 Information Theory

Spring 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

