Spring 2016

6.441 - Information Theory Homework 8

Due: Tue, Apr 19, 2016 (in class)
Prof. Y. Polyanskiy

1 Reading (optional)

1. Read [1, Chapter 7]

2 Exercises

NOTE: Each exercise is 10 points. Only 3 exercises per assignment will be graded. If you submit more than 3 solved exercises please indicate which ones you want to be graded.

1 (Information density and types.) Let $P_{Y \mid X}: \mathcal{A} \rightarrow \mathcal{B}$ be a DMC and let P_{X} be some input distribution. Take $P_{X^{n} Y^{n}}=P_{X Y}^{n}$ and define $i\left(a^{n} ; b^{n}\right)$ with respect to this $P_{X^{n} Y^{n}}$.

1. Show that $i\left(x^{n} ; y^{n}\right)$ is a function of only the "joint-type" $\hat{P}_{X Y}$ of $\left(x^{n}, y^{n}\right)$, which is a distribution on $\mathcal{A} \times \mathcal{B}$ defined as

$$
\hat{P}_{X Y}(a, b)=\frac{1}{n} \#\left\{i: x_{i}=a, y_{i}=b\right\}
$$

where $a \in \mathcal{A}$ and $b \in \mathcal{B}$. Therefore $\left\{\frac{1}{n} i\left(x^{n} ; y^{n}\right) \geq \gamma\right\}$ can be interpreted as a constraint on the joint type of $\left(x^{n}, y^{n}\right)$.
2. Assume also that the input x^{n} is such that $\hat{P}_{X}=P_{X}$. Show that

$$
\frac{1}{n} i\left(x^{n} ; y^{n}\right) \leq I\left(\hat{P}_{X}, \hat{P}_{Y \mid X}\right)
$$

The quantity $I\left(\hat{P}_{X}, \hat{P}_{Y \mid X}\right)$, sometimes written as $I\left(x^{n} \wedge y^{n}\right)$, is an empirical mutual information 1 . Hint:

$$
\begin{align*}
& \mathbb{E}_{Q_{X Y}}\left[\log \frac{P_{Y \mid X}(Y \mid X)}{P_{Y}(Y)}\right]= \\
& \quad D\left(Q_{Y \mid X} \| Q_{Y} \mid Q_{X}\right)+D\left(Q_{Y} \| P_{Y}\right)-D\left(Q_{Y \mid X} \| P_{Y \mid X} \mid Q_{X}\right) \tag{1}
\end{align*}
$$

2 Consider the following (memoryless) channel. It has a side switch U that can be in positions ON and OFF. If U is on then the channel from X to Y is $B S C(\delta)$ and if U is off then Y is Bernoulli ($1 / 2$) regardless of X. The receiving party sees Y but not U. A design constraint is that U should be in the ON position no more than the fraction s of all channel uses, $0 \leq s \leq 1$. Questions:

1. One strategy is to put U into ON over the first $s n$ time units and ignore the tail $(1-s) n$ readings of Y. What is the maximal rate in bits per channel use achievable with this strategy?

[^0]2. How much does the communication rate increase if the encoder is allowed to modulate the U switch together with the input X (while still satisfying the s-constraint on U).
3. Now assume nobody has access to U, which is random, independent of X, memoryless across different channel uses and
$$
P[U=\mathrm{ON}]=s
$$

Find capacity.
3 (Capacity-cost at $P=P_{0}$.) Recall that we have shown that for stationary memoryless channels and $P>P_{0}$ capacity equals $f(P)$:

$$
\begin{equation*}
C(P)=f(P) \tag{2}
\end{equation*}
$$

where

$$
\begin{align*}
P_{0} & \triangleq \inf _{x \in \mathcal{A}} \mathrm{c}(x) \tag{3}\\
f(P) & \triangleq \sup _{X: \mathbb{E}[c(X)] \leq P} I(X ; Y) . \tag{4}
\end{align*}
$$

Show:

1. If P_{0} is not admissible, i.e., $c(x)>P_{0}$ for all $x \in \mathcal{A}$, then $C\left(P_{0}\right)$ is undefined (even $M=1$ is not possible)
2 . If there exists a unique x_{0} such that $\mathrm{c}\left(x_{0}\right)=P_{0}$ then

$$
C\left(P_{0}\right)=f\left(P_{0}\right)=0
$$

3. If there are more than one x with $\mathrm{c}(x)=P_{0}$ then we still have

$$
C\left(P_{0}\right)=f\left(P_{0}\right) .
$$

4. Give example of a channel with discontinuity of $C(P)$ at $P=P_{0}$. (Hint: select a suitable cost function for the channel $Y=(-1)^{Z} \cdot \operatorname{sign}(X)$, where Z is Bernoulli and sign : $\mathbb{R} \rightarrow\{-1,0,1\})$

4 Consider a stationary memoryless additive non-Gaussian noise channel:

$$
Y_{i}=X_{i}+Z_{i}, \quad \mathbb{E}\left[Z_{i}\right]=0, \quad \operatorname{Var}\left[Z_{i}\right]=1
$$

with the input constraint

$$
\left\|x^{n}\right\|_{2} \leq \sqrt{n P} \quad \Longleftrightarrow \quad \sum_{i=1}^{n} x_{i}^{2} \leq n P
$$

1. Prove that capacity $C(P)$ of this channel satisfies

$$
\frac{1}{2} \log (1+P) \leq C(P) \leq \frac{1}{2} \log (1+P)+D\left(P_{Z} \| \mathcal{N}(0,1)\right)
$$

where P_{Z} is the distribution of the noise. (Hints: Gaussian saddle point and the golden formula $I(X ; Y) \leq D\left(P_{Y \mid X} \| Q_{Y} \mid P_{X}\right)$.)
2. If $D\left(P_{Z} \| \mathcal{N}(0,1)\right)=\infty(Z$ is very non-Gaussian $)$, then it is possible that the capacity is infinite. Consider Z is ± 1 equiprobably. Show that the capacity is infinite by a) proving the maximal mutual information is infinite; b) giving an explicit scheme to achieve infinite capacity.

5 (Time varying channel, Problem 9.12 [1]) A train pulls out of the station at constant velocity. The received signal energy thus falls off with time as $1 / i^{2}$. The total received signal at time i is

$$
Y_{i}=\left(\frac{1}{i}\right) X_{i}+Z_{i}
$$

where $Z_{1}, Z_{2}, \ldots \stackrel{\text { i.i.d. }}{\sim} N\left(0, \sigma^{2}\right)$. The transmitter constraint for block length n is

$$
\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}(w) \leq P, \quad w \in\left\{1,2, \ldots, 2^{n R}\right\} .
$$

Using Fano's inequality, show that the capacity C is equal to zero for this channel.
6 Consider the additive noise channel with $\mathcal{A}=\mathcal{B}=\mathbb{F}_{2}$ and $P_{Y^{n} \mid X^{n}}: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$ specified by

$$
Y^{n}=X^{n}+Z^{n},
$$

where $Z^{n}=\left(Z_{1}, \ldots, Z_{n}\right)$ is a stationary Markov chain with $P_{Z_{2} \mid Z_{1}}(0 \mid 1)=P_{Z_{2} \mid Z_{1}}(1 \mid 0)=\tau$. Find the Shannon capacity

$$
C=\lim _{\epsilon \rightarrow 0+} \liminf _{n \rightarrow \infty} \frac{1}{n} \log M^{*}(n, \epsilon) .
$$

(Hint: your proof should work for an arbitrary stationary ergodic noise process $Z^{\infty}=$ $\left.\left(Z_{1}, \ldots\right)\right)$. Can the capacity be achieved by linear codes?

References

[1] T. Cover and J. Thomas, Elements of Information Theory, Second Edition, Wiley, 2006

MIT OpenCourseWare
https://ocw.mit.edu

6.441 Information Theory

Spring 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

[^0]: ${ }^{1}$ Invented by V. Goppa for his maximal mutual information (MMI) decoder:

 $$
 \hat{W}=\underset{i=1, \ldots, M}{\operatorname{argmax}} I\left(c_{i} \wedge y^{n}\right)
 $$

