
Spring 2016
6.441 - Information Theory

Midterm (take home)
Due: Tue, Mar 29, 2016 (in class)

Prof. Y. Polyanskiy

1 Rules

1. Collaboration strictly prohibited.

2. Write rigorously, prove all claims.

3. You can use notes and textbooks.

4. All exercises are 10 points.

2 Exercises

1 Let X ∈ {0, 1} and let Y be a nonnegative integer-valued random variable with joint distribution

PXY (i, j) = α 2−i−2j

where α is a normalization constant. Find H(X), H(Y ), H(X,Y ), H(Y |X), H(X|Y ),
D(PY |X=0||PY P|X=1) and D( Y |X=1||PY |X=0).

2 Let X be distributed according to the exponential distribution with mean µ > 0, i.e., with
density p(x) = 1 e x/µ1 . Let a . Compute the divergence D(PX+a PX).µ

−
{x≥0 ∈ R} ||

3 Let (X,Y ) be uniformly distributed in the unit `p-ball Bp =
4 {(x, y) : |x|p + |y|p ≤ 1}, where

p ∈ (0,∞). Also define the ` -ball B =
4

∞ ∞ {(x, y) : |x| ≤ 1, |y| ≤ 1}.

1. Compute I(X;Y ) for p = 1/2, p = 1 and p =∞.

2. (Bonus) What do you think I(X;Y ) converges to as p→ 0. Can you prove it?

4 Let X and Y have finite alphabets. Let C(PY X) = maxPX
I(X;Y ) be the capacity of P| Y |X .

1. Is PX 7→ H(PX) strictly concave?

2. Fix PY |X . Is PX 7→ I(X;Y ) strictly concave?

3. Fix PY X with C(P| Y |X) > 0. Is PX 7→ I(X;Y ) strictly concave?

4. Fix PX with H(PX) > 0. Is PY |X 7→ I(X;Y ) strictly convex?

5. Is PXY 7→ I(X;Y ) convex, concave, or neither?

6. Is PY |X 7→ C(PY v|X) convex, conca e or neither?

5 Let {Yk, k = 0, . . .} be a binary stationary Markov process defined as follows: Let Y0 be a binary
equiprobable random variable, and {

1 δ
PYk+1|Yk [b|a] =

− b = a
δ b 6= a

Find I(Y0;Yn). At what speed does I(Y0;Yn) vanish with n?
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6 (Finiteness of entropy) We have shown that any N-valued random variable X, with E[X] < ∞
has H(X) ≤ E [X]h(1/E [X]) <∞. Next let us improve this result.

1. Show that E[logX] <∞⇒ H(X) <∞.

Moreover, show that the condition of X being integer-valued is not superfluous by giving
a counterexample.

2. Show that if k 7→ PX(k) is a decreasing sequence, then H(X) <∞⇒ E[logX] <∞.

Moreover, show that the monotonicity of pmf is not superfluous by giving a counterex-
ample.

7 Consider the hypothesis testing problem:

i.i.d.
H0 : X1, . . . , Xn ∼ P = N (0, 1) ,

i.i.d.
H1 : X1, . . . , Xn ∼ Q = N (µ, 1) .

Questions:

1. Compute the Stein exponent.

2. Compute the tradeoff region E of achievable error-exponent pairs (E0, E1). Express the
optimal boundary in explicit form (eliminate the parameter).

3. Identify the divergence-minimizing geodesic P (λ) running from P to Q, λ [0, 1]. Verify
that (E ,E ) = (D(P (λ)‖P ), D(P (λ)

∈
0 1 ‖Q)), 0 ≤ λ ≤ 1 gives the same tradeoff curve.

4. Compute the Chernoff exponent.

8 Baby Sanov. Let X be a finite set. Let E be a convex subset of the simplex of probability
distributions on X . Assume that E has non-empty interior. Let Xn = (X1, . . . , Xn) be iid
drawn from some distribution P and let πn denote the empirical distribution, i.e., πn =
1 n
n

∑
i=1 δXi , which is a function of Xn. Our goal is to show that

1
E , lim

n→∞ n
log

1
= inf D(Q

P (πn ∈ E) Q∈E
||P ). (1)

a) Define the following set of joint distributions En , {QXn : QXi ∈ E}. Show that

inf D(QXn ||PXn) = n inf D(Q
Q nX ∈En Q∈E

||P ),

where PXn = Pn.

˜ ˜b) Consider the conditional distribution PXn = PXn πn . Show that P| ∈E Xn ∈ En.

c) Show that

P (πn ∈ E) ≤ exp
(
− n inf D(Q

Q∈E
||P )

)
, ∀n.

d) For any Q in the interior of E , show that

P (πn ∈ E) ≥ exp(−nD(Q||P ) + o(n)), n→∞.

(Hint: Use data processing as in the proof of the large deviation theorem.)
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e) Conclude (1).

Comment: Benefit of this proof compared to method of types is that it easily extends
to infinite alphabets.

9 Let Xj ∼ exp(1) be i.i.d. exponential with mean 1. Since MGF ΨX(λ) does not exist for all
λ > 1, the result

n

P[
∑

Xj ≥ nγ] = exp{−nΨ∗X(γ) + o(n)
j=1

} (2)

proven in class does not apply. Show (2) via the following steps:

1. Apply Chernoff argument directly to prove an upper bound:

n

P[
∑

Xj ≥ nγ] ≤ exp{−nΨ∗X(γ)
j=1

} (3)

2. Fix an arbitrary A > 0 and prove

n

P[
∑

Xj ≥ nγ] ≥ P[
∑n

(Xj

j=1 j=1

∧A) ≥ nγ] , (4)

where u ∧ v = min(u, v).

3. Apply the results shown in class to investigate the asymptotics of the right-hand side
of (4).

4. Conclude the proof of (2) by taking A→∞.

10 (Gibbs distribution) Let X be finite alphabet, f : X → R some function and Emin = min f(x).

1. Using I-projection show that for any E ≥ Emin the solution of

H∗(E) = max{H(X) : E [f(X)] ≤ E}

is given by PX(x) = 1 e βf(x) for some β = β(E).Z(β)
−

Comment: In statistical physics x is state of the system (e.g. locations and velocities of
all molecules), f(x) is energy of the system in state x, PX is the Gibbs distribution and
β = 1

T is the inverse temperatur of the system. In thermodynamic equillibrium, PX(x)
gives fraction of time system spends in state x.

2. Show that dH∗(E) = β(E).dE

3. Next consider two functions f0, f1 (i.e. two types of molecules with different state-energy
relations). Show that for E ≥ minx0 f(x0) + minx1 f(x1) we have

max H(X0, X1) = max H0
∗(E0) +H1

∗(E1) (5)
E [f0(X0)+f1(X1)]≤E E0+E1≤E

where Hj
∗(E) = maxE [fj(X)]≤E H(X).

4. Further, show that for the optimal choice of E0 and E1 in (5) we have

β0(E0) = β1(E1) (6)

or equivalently that the optimal distribution PX0,X1 is given by

1
PX0,X1(a, b) = e−β(f0(a)+f1(b)) (7)

Z0(β)Z1(β)
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Remark: (7) also just follows from part 1 by taking f(x0, x1) = f0(x0) + f1(x1). The point
here is relation (6): when two thermodynamical systems are brought in contact with each
other, the energy distributes among them in such a way that β parameters (temperatures)
equalize.
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