Spring 2016

6.441 - Information Theory
 Midterm (take home)

Due: Tue, Mar 29, 2016 (in class)
Prof. Y. Polyanskiy

1 Rules

1. Collaboration strictly prohibited.
2. Write rigorously, prove all claims.
3. You can use notes and textbooks.
4. All exercises are 10 points.

2 Exercises

1 Let $X \in\{0,1\}$ and let Y be a nonnegative integer-valued random variable with joint distribution

$$
P_{X Y}(i, j)=\alpha 2^{-i-2 j}
$$

where α is a normalization constant. Find $H(X), H(Y), H(X, Y), H(Y \mid X), H(X \mid Y)$, $D\left(P_{Y \mid X=0} \| P_{Y \mid X=1}\right)$ and $D\left(P_{Y \mid X=1} \| P_{Y \mid X=0}\right)$.
2 Let X be distributed according to the exponential distribution with mean $\mu>0$, i.e., with density $p(x)=\frac{1}{\mu} \mathrm{e}^{-x / \mu} \mathbf{1}_{\{x \geq 0\}}$. Let $a \in \mathbb{R}$. Compute the divergence $D\left(P_{X+a} \| P_{X}\right)$.

3 Let (X, Y) be uniformly distributed in the unit ℓ_{p}-ball $B_{p} \triangleq\left\{(x, y):|x|^{p}+|y|^{p} \leq 1\right\}$, where $p \in(0, \infty)$. Also define the ℓ_{∞}-ball $B_{\infty} \triangleq\{(x, y):|x| \leq 1,|y| \leq 1\}$.

1. Compute $I(X ; Y)$ for $p=1 / 2, p=1$ and $p=\infty$.
2. (Bonus) What do you think $I(X ; Y)$ converges to as $p \rightarrow 0$. Can you prove it?

4 Let X and Y have finite alphabets. Let $C\left(P_{Y \mid X}\right)=\max _{P_{X}} I(X ; Y)$ be the capacity of $P_{Y \mid X}$.

1. Is $P_{X} \mapsto H\left(P_{X}\right)$ strictly concave?
2. Fix $P_{Y \mid X}$. Is $P_{X} \mapsto I(X ; Y)$ strictly concave?
3. Fix $P_{Y \mid X}$ with $C\left(P_{Y \mid X}\right)>0$. Is $P_{X} \mapsto I(X ; Y)$ strictly concave?
4. Fix P_{X} with $H\left(P_{X}\right)>0$. Is $P_{Y \mid X} \mapsto I(X ; Y)$ strictly convex?
5. Is $P_{X Y} \mapsto I(X ; Y)$ convex, concave, or neither?
6. Is $P_{Y \mid X} \mapsto C\left(P_{Y \mid X}\right)$ convex, concave or neither?

5 Let $\left\{Y_{k}, k=0, \ldots\right\}$ be a binary stationary Markov process defined as follows: Let Y_{0} be a binary equiprobable random variable, and

$$
P_{Y_{k+1} \mid Y_{k}}[b \mid a]= \begin{cases}1-\delta & b=a \\ \delta & b \neq a\end{cases}
$$

Find $I\left(Y_{0} ; Y_{n}\right)$. At what speed does $I\left(Y_{0} ; Y_{n}\right)$ vanish with n ?

6 (Finiteness of entropy) We have shown that any \mathbb{N}-valued random variable X, with $\mathbb{E}[X]<\infty$ has $H(X) \leq \mathbb{E}[X] h(1 / \mathbb{E}[X])<\infty$. Next let us improve this result.

1. Show that $\mathbb{E}[\log X]<\infty \Rightarrow H(X)<\infty$.

Moreover, show that the condition of X being integer-valued is not superfluous by giving a counterexample.
2. Show that if $k \mapsto P_{X}(k)$ is a decreasing sequence, then $H(X)<\infty \Rightarrow \mathbb{E}[\log X]<\infty$.

Moreover, show that the monotonicity of pmf is not superfluous by giving a counterexample.

7 Consider the hypothesis testing problem:

$$
\begin{aligned}
& H_{0}: X_{1}, \ldots, X_{n} \stackrel{\text { i.i.d. }}{\sim} P=\mathcal{N}(0,1), \\
& H_{1}: X_{1}, \ldots, X_{n} \stackrel{\text { i.i.d. }}{\sim} Q=\mathcal{N}(\mu, 1) .
\end{aligned}
$$

Questions:

1. Compute the Stein exponent.
2. Compute the tradeoff region \mathcal{E} of achievable error-exponent pairs (E_{0}, E_{1}). Express the optimal boundary in explicit form (eliminate the parameter).
3. Identify the divergence-minimizing geodesic $P^{(\lambda)}$ running from P to $Q, \lambda \in[0,1]$. Verify that $\left(E_{0}, E_{1}\right)=\left(D\left(P^{(\lambda)} \| P\right), D\left(P^{(\lambda)} \| Q\right)\right), 0 \leq \lambda \leq 1$ gives the same tradeoff curve.
4. Compute the Chernoff exponent.

8 Baby Sanov. Let \mathcal{X} be a finite set. Let \mathcal{E} be a convex subset of the simplex of probability distributions on \mathcal{X}. Assume that \mathcal{E} has non-empty interior. Let $X^{n}=\left(X_{1}, \ldots, X_{n}\right)$ be iid drawn from some distribution P and let π_{n} denote the empirical distribution, i.e., $\pi_{n}=$ $\frac{1}{n} \sum_{i=1}^{n} \delta_{X_{i}}$, which is a function of X^{n}. Our goal is to show that

$$
\begin{equation*}
E \triangleq \lim _{n \rightarrow \infty} \frac{1}{n} \log \frac{1}{P\left(\pi_{n} \in \mathcal{E}\right)}=\inf _{Q \in \mathcal{E}} D(Q \| P) \tag{1}
\end{equation*}
$$

a) Define the following set of joint distributions $\mathcal{E}_{n} \triangleq\left\{Q_{X^{n}}: Q_{X_{i}} \in \mathcal{E}\right\}$. Show that

$$
\inf _{Q_{X^{n} \in \mathcal{E}_{n}}} D\left(Q_{X^{n}} \| P_{X^{n}}\right)=n \inf _{Q \in \mathcal{E}} D(Q \| P),
$$

where $P_{X^{n}}=P^{n}$.
b) Consider the conditional distribution $\tilde{P}_{X^{n}}=P_{X^{n} \mid \pi_{n} \in \mathcal{E}}$. Show that $\tilde{P}_{X^{n}} \in \mathcal{E}_{n}$.
c) Show that

$$
P\left(\pi_{n} \in \mathcal{E}\right) \leq \exp \left(-n \inf _{Q \in \mathcal{E}} D(Q \| P)\right), \quad \forall n
$$

d) For any Q in the interior of \mathcal{E}, show that

$$
P\left(\pi_{n} \in \mathcal{E}\right) \geq \exp (-n D(Q \| P)+o(n)), \quad n \rightarrow \infty .
$$

(Hint: Use data processing as in the proof of the large deviation theorem.)
e) Conclude (1).

Comment: Benefit of this proof compared to method of types is that it easily extends to infinite alphabets.

9 Let $X_{j} \sim \exp (1)$ be i.i.d. exponential with mean 1. Since MGF $\Psi_{X}(\lambda)$ does not exist for all $\lambda>1$, the result

$$
\begin{equation*}
\mathbb{P}\left[\sum_{j=1}^{n} X_{j} \geq n \gamma\right]=\exp \left\{-n \Psi_{X}^{*}(\gamma)+o(n)\right\} \tag{2}
\end{equation*}
$$

proven in class does not apply. Show (2) via the following steps:

1. Apply Chernoff argument directly to prove an upper bound:

$$
\begin{equation*}
\mathbb{P}\left[\sum_{j=1}^{n} X_{j} \geq n \gamma\right] \leq \exp \left\{-n \Psi_{X}^{*}(\gamma)\right\} \tag{3}
\end{equation*}
$$

2. Fix an arbitrary $A>0$ and prove

$$
\begin{equation*}
\mathbb{P}\left[\sum_{j=1}^{n} X_{j} \geq n \gamma\right] \geq \mathbb{P}\left[\sum_{j=1}^{n}\left(X_{j} \wedge A\right) \geq n \gamma\right] \tag{4}
\end{equation*}
$$

where $u \wedge v=\min (u, v)$.
3. Apply the results shown in class to investigate the asymptotics of the right-hand side of (4).
4. Conclude the proof of (2) by taking $A \rightarrow \infty$.

10 (Gibbs distribution) Let \mathcal{X} be finite alphabet, $f: \mathcal{X} \rightarrow \mathbb{R}$ some function and $E_{\text {min }}=\min f(x)$.

1. Using I-projection show that for any $E \geq E_{\min }$ the solution of

$$
H^{*}(E)=\max \{H(X): \mathbb{E}[f(X)] \leq E\}
$$

is given by $P_{X}(x)=\frac{1}{Z(\beta)} e^{-\beta f(x)}$ for some $\beta=\beta(E)$.
Comment: In statistical physics x is state of the system (e.g. locations and velocities of all molecules), $f(x)$ is energy of the system in state x, P_{X} is the Gibbs distribution and $\beta=\frac{1}{T}$ is the inverse temperatur of the system. In thermodynamic equillibrium, $P_{X}(x)$ gives fraction of time system spends in state x.
2. Show that $\frac{d H^{*}(E)}{d E}=\beta(E)$.
3. Next consider two functions f_{0}, f_{1} (i.e. two types of molecules with different state-energy relations). Show that for $E \geq \min _{x_{0}} f\left(x_{0}\right)+\min _{x_{1}} f\left(x_{1}\right)$ we have

$$
\begin{equation*}
\max _{\mathbb{E}\left[f_{0}\left(X_{0}\right)+f_{1}\left(X_{1}\right)\right] \leq E} H\left(X_{0}, X_{1}\right)=\max _{E_{0}+E_{1} \leq E} H_{0}^{*}\left(E_{0}\right)+H_{1}^{*}\left(E_{1}\right) \tag{5}
\end{equation*}
$$

where $H_{j}^{*}(E)=\max _{\mathbb{E}}\left[f_{j}(X)\right] \leq E H(X)$.
4. Further, show that for the optimal choice of E_{0} and E_{1} in (5) we have

$$
\begin{equation*}
\beta_{0}\left(E_{0}\right)=\beta_{1}\left(E_{1}\right) \tag{6}
\end{equation*}
$$

or equivalently that the optimal distribution $P_{X_{0}, X_{1}}$ is given by

$$
\begin{equation*}
P_{X_{0}, X_{1}}(a, b)=\frac{1}{Z_{0}(\beta) Z_{1}(\beta)} e^{-\beta\left(f_{0}(a)+f_{1}(b)\right)} \tag{7}
\end{equation*}
$$

Remark: (7) also just follows from part 1 by taking $f\left(x_{0}, x_{1}\right)=f_{0}\left(x_{0}\right)+f_{1}\left(x_{1}\right)$. The point here is relation (6): when two thermodynamical systems are brought in contact with each other, the energy distributes among them in such a way that β parameters (temperatures) equalize.

MIT OpenCourseWare
https://ocw.mit.edu

6.441 Information Theory

Spring 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

