Setup:

$$
\begin{aligned}
& H_{0}: X^{n} \sim P_{X^{n}} \quad H_{1}: X^{n} \sim Q_{X^{n}} \\
& \text { test } P_{Z \mid X^{n}}: \mathcal{X}^{n} \rightarrow\{0,1\} \\
& \text { specification } 1-\alpha=\pi_{1 \mid 0} \quad \beta=\pi_{0 \mid 1}
\end{aligned}
$$

11.1 Stein's regime

$$
\begin{aligned}
& 1-\alpha=\pi_{1 \mid 0} \leq \epsilon \\
& \beta=\pi_{0 \mid 1} \rightarrow 0 \text { at the rate } 2^{-n V_{\epsilon}}
\end{aligned}
$$

Note: interpretation of this specification, usually a "miss" (0|1) is much worse than a "false alarm" (1|0).
Definition 11.1 (ϵ-optimal exponent). V_{ϵ} is called an ϵ-optimal exponent in Stein's regime if

$$
\begin{aligned}
V_{\epsilon} & =\sup \left\{E: \exists n_{0}, \forall n \geq n_{0}, \exists P_{Z \mid X^{n}} \text { s.t. } \alpha>1-\epsilon, \beta<2^{-n E},\right\} \\
\Leftrightarrow & V_{\epsilon}
\end{aligned}=\liminf _{n \rightarrow \infty} \frac{1}{n} \log \frac{1}{\beta_{1-\epsilon}\left(P_{X^{n}}, Q_{X^{n}}\right)} .
$$

where $\beta_{\alpha}(P, Q)=\min _{P_{Z \mid X}, P(Z=0) \geq \alpha} Q(Z=0)$.
Exercise: Check the equivalence.
Definition 11.2 (Stein's exponent).

$$
V=\lim _{\epsilon \rightarrow 0} V_{\epsilon} .
$$

Theorem 11.1 (Stein's lemma). Let $P_{X^{n}}=P_{X}^{n}$ i.i.d. and $Q_{X^{n}}=Q_{X}^{n}$ i.i.d. Then

$$
V_{\epsilon}=D(P \| Q), \quad \forall \epsilon \in(0,1) .
$$

Consequently,

$$
V=D(P \| Q) .
$$

Example: If it is required that $\alpha \geq 1-10^{-3}$, and $\beta \leq 10^{-40}$, what's the number of samples needed? Stein's lemma provides a rule of thumb: $n \gtrsim-\frac{\log 10^{-40}}{D(P \| Q)}$.

Proof. Denote $F=\log \frac{d P}{d Q}$, and $F_{n}=\log \frac{d P_{X^{n}}}{d Q^{n}}=\sum_{i=1}^{n} \log \frac{d P}{d Q}\left(X_{i}\right)$ - iid sum.
Recall Neyman Pearson's lemma on optimal tests (likelihood ratio test): $\forall \tau$,

$$
\alpha=P(F>\tau), \quad \beta=Q(F>\tau) \leq e^{-\tau}
$$

Also notice that by WLLN, under P, as $n \rightarrow \infty$,

$$
\begin{equation*}
\frac{1}{n} F_{n}=\frac{1}{n} \sum_{i=1}^{n} \log \frac{d P\left(X_{i}\right)}{d Q\left(X_{i}\right)} \stackrel{\mathbb{P}}{\rightarrow} \mathbb{E}_{P}\left[\log \frac{d P}{d Q}\right]=D(P \| Q) . \tag{11.1}
\end{equation*}
$$

Alternatively, under Q, we have

$$
\begin{equation*}
\frac{1}{n} F_{n} \xrightarrow{\mathbb{P}} \mathbb{E}_{Q}\left[\log \frac{d P}{d Q}\right]=-D(Q \| P) \tag{11.2}
\end{equation*}
$$

1. Show $V_{\epsilon} \geq D(P \| Q)=D$.

Pick $\tau=n(D-\delta)$, for some small $\delta>0$. Then the optimal test achieves:

$$
\begin{aligned}
& \alpha=P\left(F_{n}>n(D-\delta)\right) \rightarrow 1, \text { by }(\underline{11.1)} \\
& \beta \leq e^{-n(D-\delta)}
\end{aligned}
$$

then pick n large enough (depends on ϵ, δ) such that $\alpha \geq 1-\epsilon$, we have the exponent $E=D-\delta$ achievable, $V_{\epsilon} \geq E$. Further let $\delta \rightarrow 0$, we have that $V_{\epsilon} \geq D$.
2. Show $V_{\epsilon} \leq D(P \| Q)=D$.
a) (weak converse) $\forall(\alpha, \beta) \in \mathcal{R}\left(P_{X^{n}}, Q_{X^{n}}\right)$, we have

$$
\begin{equation*}
-h(\alpha)+\alpha \log \frac{1}{\beta} \leq d(\alpha \| \beta) \leq D\left(P_{X^{n}} \| Q_{X^{n}}\right) \tag{11.3}
\end{equation*}
$$

where the first inequality is due to

$$
d(\alpha \| \beta)=\alpha \log \frac{\alpha}{\beta}+\bar{\alpha} \log \frac{\bar{\alpha}}{\bar{\beta}}=-h(\alpha)+\alpha \log \frac{1}{\beta}+\underbrace{\bar{\alpha} \log \frac{1}{\bar{\beta}}}_{\geq 0 \text { and } \approx 0 \text { for small } \beta}
$$

and the second is due to the weak converse Theorem 10.4 proved in the last lecture (data processing inequality for divergence).
\forall achievable exponent $E<V_{\epsilon}$, by definition, there exists a sequence of tests $P_{Z \mid X^{n}}$ such that $\alpha_{n} \geq 1-\epsilon$ and $\beta_{n} \leq 2^{-n E}$. Plugging it in (11.3) and using $h \leq \log 2$, we have

$$
-\log 2+(1-\epsilon) n E \leq n D(P \| Q) \Rightarrow E \leq \frac{D(P \| Q)}{1-\epsilon}+\underbrace{\frac{\log 2}{n(1-\epsilon)}}_{\rightarrow 0, \text { as } n \rightarrow \infty} \text {. }
$$

Therefore

$$
V_{\epsilon} \leq \frac{D(P \| Q)}{1-\epsilon}
$$

Notice that this is weaker than what we hoped to prove, and this weak converse result is tight for $\epsilon \rightarrow 0$, i.e., for Stein's exponent we did have the desired result $V=\lim _{\epsilon \rightarrow 0} V_{\epsilon} \geq$ $D(P \| Q)$.
b) (strong converse) In proving the weak converse, we only made use of the expectation of F_{n} in (11.3), we need to make use of the entire distribution (CDF) in order to obtain stronger results.
Recall the strong converse result which we showed in the last lecture:

$$
\forall(\alpha, \beta) \in \mathcal{R}(P, Q), \forall \gamma, \quad \alpha-\gamma \beta \leq P(F>\log \gamma)
$$

Here, suppose there exists a sequence of tests $P_{Z \mid X_{n}}$ which achieve $\alpha_{n} \geq 1-\epsilon$ and $\beta_{n} \leq 2^{-n E}$. Then

$$
1-\epsilon-\gamma 2^{-n E} \leq \alpha_{n}-\gamma \beta_{n} \leq P_{X^{n}}\left[F_{n}>\log \gamma\right] .
$$

Pick $\log \gamma=n(D+\delta)$, by (11.1) the RHS goes to 0 , and we have

$$
\begin{aligned}
& 1-\epsilon-2^{n(D+\delta)} 2^{-n E} \leq o(1) \\
\Rightarrow & D+\delta-E \geq \frac{1}{n} \log (1-\epsilon+o(1)) \rightarrow 0 \\
\Rightarrow & E \leq D \text { as } \delta \rightarrow 0 \\
\Rightarrow & V_{\epsilon} \leq D
\end{aligned}
$$

Note: [Ergodic] Just like in last section of data compression. Ergodic assumptions on $P_{X^{n}}$ and $Q_{X^{n}}$ allow one to show that

$$
V_{\epsilon}=\lim _{n \rightarrow \infty} \frac{1}{n} D\left(P_{X^{n}} \| Q_{X^{n}}\right)
$$

the counterpart of (11.3), which is the key for picking the appropriate τ, for ergodic sequence X^{n} is the Birkhoff-Khintchine convergence theorem.
Note: The theoretical importance of knowing the Stein's exponents is that:

$$
\forall E \subset \mathcal{X}^{n}, \quad P_{X^{n}}[E] \geq 1-\epsilon \Rightarrow Q_{X^{n}}[E] \geq 2^{-n V_{\epsilon}+o(n)}
$$

Thus knowledge of Stein's exponent V_{ϵ} allows one to prove exponential bounds on probabilities of arbitrary sets, the technique is known as "change of measure".

11.2 Chernoff regime

We are still considering i.i.d. sequence X^{n}, and binary hypothesis

$$
H_{0}: X^{n} \sim P_{X}^{n} \quad H_{1}: X^{n} \sim Q_{X}^{n}
$$

But our objective in this section is to have both types of error probability to vanish exponentially fast simultaneously. We shall look at the following specification:

$$
\begin{aligned}
1-\alpha & =\pi_{1 \mid 0} \rightarrow 0 \\
\beta & =\pi_{0 \mid 1} \rightarrow 0
\end{aligned} \quad \text { at the rate } 2^{-n E_{0}}
$$

Apparently, E_{0} (resp. E_{1}) can be made arbitrarily big at the price of making E_{1} (resp. E_{0}) arbitrarily small. So the problem boils down to the optimal tradeoff, i.e., what's the achievable region of $\left(E_{0}, E_{1}\right)$? This problem is solved by [Hoeffding '65], [Blahut '74].

characterize the boundary of the achievable region of $\left(E_{0}, E_{1}\right)$
The optimal tests give the explict error probability:

$$
\alpha_{n}=P\left[\frac{1}{n} F_{n}>\tau\right], \quad \beta_{n}=Q\left[\frac{1}{n} F_{n}>\tau\right]
$$

and we are interested in the asymptotics when $n \rightarrow \infty$, in which scenario we know (11.1) and (11.2) occur.

Stein's regime corresponds to the corner points. Indeed, Theorem 11.1 tells us that when fixing $\alpha_{n}=1-\epsilon$, namely $E_{0}=0$, picking $\tau=D(P \| Q)-\delta(\delta \rightarrow 0)$ gives the exponential convergence rate of β_{n} as $E_{1}=D(P \| Q)$. Similarly, exchanging the role of P and Q, we can achieves the point $\left(E_{0}, E_{1}\right)=(D(Q \| P), 0)$. More generally, to achieve the optimal tradeoff between the two corner points, we need to introduce a powerful tool - Large Deviation Theory.
Note: Here is a roadmap of the upcoming 2 lectures:

1. basics of large deviation $\left(\psi_{X}, \psi_{X}^{*}\right.$, tilted distribution $\left.P_{\lambda}\right)$
2. information projection problem

$$
\min _{Q: \mathbb{E}_{Q}[X] \geq \gamma} D(Q \| P)=\psi^{*}(\gamma)
$$

3. use information projection to prove tight Chernoff bound

$$
\mathbb{P}\left[\frac{1}{n} \sum_{k=1}^{n} X_{k} \geq \gamma\right]=2^{-n \psi^{*}(\gamma)+o(n)}
$$

4. apply the above large deviation theorem to $\left(E_{0}, E_{1}\right)$ to get

$$
\left(E_{0}(\theta)=\psi_{P}^{*}(\theta), \quad E_{1}(\theta)=\psi_{P}^{*}(\theta)-\theta\right) \quad \text { characterize the achievable boundary. }
$$

11.3 Basics of Large deviation theory

Let X^{n} be an i.i.d. sequence and $X_{i} \sim P$. Large deviation focuses on the following inequality:

$$
P\left[\sum_{i=1}^{n} X_{i} \geq n \gamma\right]=2^{-n E(\gamma)+o(n)}
$$

what is the rate function $E(\gamma)=-\lim _{n \rightarrow \infty} \frac{1}{n} \log P\left[\frac{\sum_{i=1}^{n} X_{i}}{n} \geq \gamma\right]$? (Chernoff's ineq.)

To motivate, let us recall the usual Chernoff bound: For iid X^{n}, for any $\lambda \geq 0$,

$$
\begin{aligned}
\mathbb{P}\left[\sum_{i=1}^{n} X_{i} \geq n \gamma\right] & =\mathbb{P}\left[\exp \left(\lambda \sum_{i=1}^{n} X_{i}\right) \geq \exp (n \lambda \gamma)\right] \\
& \stackrel{\text { Markov }}{\leq} \exp (-n \lambda \gamma) \mathbb{E}\left[\exp \left(\lambda \sum_{i=1}^{n} X_{i}\right)\right] \\
& =\exp \{-n \lambda \gamma+n \log \mathbb{E}[\exp (\lambda X)]\}
\end{aligned}
$$

Optimizing over $\lambda \geq 0$ gives the non-asymptotic upper bound (concentration inequality) which holds for any n :

$$
\mathbb{P}\left[\sum_{i=1}^{n} X_{i} \geq n \gamma\right] \leq \exp \{-n \sup _{\lambda \geq 0}(\lambda \gamma-\underbrace{\log \mathbb{E}[\exp (\lambda X)]}_{\log \text { MGF }})\} .
$$

Of course we still need to show the lower bound.
Let's first introduce the two key quantities: log MGF (also known as the cumulant generating function) $\psi_{X}(\lambda)$ and tilted distribution P_{λ}.

11.3.1 log MGF

Definition 11.3 (log MGF).

$$
\psi_{X}(\lambda)=\log (\mathbb{E}[\exp (\lambda X)]), \quad \lambda \in \mathbb{R}
$$

Per the usual convention, we will also denote $\psi_{P}(\lambda)=\psi_{X}(\lambda)$ if $X \sim P$.
Assumptions: In this section, we shall restrict to the distribution P_{X} such that

1. MGF exists, i.e., $\forall \lambda \in \mathbb{R}, \psi_{X}(\lambda)<\infty$,
2. $X \neq$ const.

Example:

- Gaussian: $X \sim \mathcal{N}(0,1) \Rightarrow \psi_{X}(\lambda)=\frac{\lambda^{2}}{2}$.
- Example of R.V. such that $\psi_{X}(\lambda)$ does not exist: $X=Z^{3}$ with $Z \sim$ Gaussian. Then $\left.\psi_{X}(\lambda)=\infty, \forall \lambda\right] \neq 0$.

Theorem 11.2 (Properties of ψ_{X}).

1. ψ_{X} is convex;
2. ψ_{X} is continuous;
3. ψ_{X} is infinitely differentiable and

$$
\psi_{X}^{\prime}(\lambda)=\frac{\mathbb{E}\left[X e^{\lambda X}\right]}{\mathbb{E}\left[e^{\lambda X}\right]}=e^{-\psi_{X}(\lambda)} \mathbb{E}\left[X e^{\lambda X}\right] .
$$

In particular, $\psi_{X}(0)=0, \psi_{X}^{\prime}(0)=\mathbb{E}[X]$.
4. If $a \leq X \leq b$ a.s., then $a \leq \psi_{X}^{\prime} \leq b$;
5. Conversely, if

$$
A=\inf _{\lambda \in \mathbb{R}} \psi_{X}^{\prime}(\lambda), \quad B=\sup _{\lambda \in \mathbb{R}} \psi_{X}^{\prime}(\lambda),
$$

then $A \leq X \leq B$ a.s.;
6. ψ_{X} is strictly convex, and consequently, ψ_{X}^{\prime} is strictly increasing.
7. Chernoff bound:

$$
P(X \geq \gamma) \leq \exp \left(-\lambda \gamma+\psi_{X}(\lambda)\right), \quad \lambda \geq 0 .
$$

Remark 11.1. The slope of log MGF encodes the range of X. Indeed, 4) and 5) of Theorem 11.2 together show that the smallest closed interval containing the support of P_{X} equals (closure of) the range of ψ_{X}^{\prime}. In other words, A and B coincide with the essential infimum and supremum (min and max of RV in the probabilistic sense) of X respectively,

$$
\begin{aligned}
& A=\operatorname{essinf} X \triangleq \sup \{a: X \geq a \text { a.s. }\} \\
& B=\operatorname{esssup} X \triangleq \inf \{b: X \leq b \text { a.s. }\}
\end{aligned}
$$

Proof. Note: 1-4 can be proved right now. 7 is the usual Chernoff bound. The proof of 5-6 relies on Theorem 11.4, which can be skipped for now.

1. Fix $\theta \in(0,1)$. Recall Holder's inequality:

$$
\mathbb{E}[|U V|] \leq\|U\|_{p}\|V\|_{q}, \quad \text { for } p, q \geq 1, \frac{1}{p}+\frac{1}{q}=1
$$

where the L_{p}-norm of RV is defined by $\|U\|_{p}=\left(\mathbb{E}|U|^{p}\right)^{1 / p}$. Applying to $\mathbb{E}\left[e^{\left(\theta \lambda_{1}+\bar{\theta} \lambda_{2}\right) X}\right]$ with $p=1 / \theta, q=1 / \bar{\theta}$, we get

$$
\begin{aligned}
& \mathbb{E}\left[\exp \left(\left(\lambda_{1} / p+\lambda_{2} / q\right) X\right)\right] \leq\left\|\exp \left(\lambda_{1} X / p\right)\right\|_{p}\left\|\exp \left(\lambda_{2} X / q\right)\right\|_{q}=\mathbb{E}\left[\exp \left(\lambda_{1} X\right)\right]^{\theta} \mathbb{E}\left[\exp \left(\lambda_{2} X\right)\right]^{\bar{\theta}} \text {, } \\
& \text { i.e., } e^{\psi_{X}\left(\theta \lambda_{1}+\bar{\theta} \lambda_{2}\right)} \leq e^{\psi_{X}\left(\lambda_{1}\right) \theta} e^{\psi_{X}\left(\lambda_{2}\right) \bar{\theta}} .
\end{aligned}
$$

2. By our assumptions on X, domain of ψ_{X} is \mathbb{R}, and by the fact that convex function must be continuous on the interior of its domain, we have that ψ_{X} is continuous on \mathbb{R}.
3. Be careful when exchanging the order of differentiation and expectation.

Assume $\lambda>0$ (similar for $\lambda \leq 0$).
First, we show that $\mathbb{E}\left[\left|X e^{\lambda X}\right|\right]$ exists. Since

$$
\begin{aligned}
& e^{|X|} \leq e^{X}+e^{-X} \\
& \left|X e^{\lambda X}\right| \leq e^{|(\lambda+1) X|} \leq e^{(\lambda+1) X}+e^{-(\lambda+1) X}
\end{aligned}
$$

by assumption on X, both of the summands are absolutely integrable in X. Therefore by dominated convergence theorem (DCT), $\mathbb{E}\left[\left|X e^{\lambda X}\right|\right]$ exists and is continuous in λ.
Second, by the existence and continuity of $\mathbb{E}\left[\left|X e^{\lambda X}\right|\right], u \mapsto \mathbb{E}\left[\left|X e^{u X}\right|\right]$ is integrable on $[0, \lambda]$, we can switch order of integration and differentiation as follows:

$$
\begin{aligned}
& e^{\psi_{X}(\lambda)}=\mathbb{E}\left[e^{\lambda X}\right]=\mathbb{E}\left[1+\int_{0}^{\lambda} X e^{u X} d u\right] \stackrel{\text { Fubini }}{=} 1+\int_{0}^{\lambda} \mathbb{E}\left[X e^{u X}\right] d u \\
\Rightarrow & \psi_{X}^{\prime}(\lambda) e^{\psi_{X}(\lambda)}=\mathbb{E}\left[X e^{\lambda X}\right]
\end{aligned}
$$

thus $\psi_{X}^{\prime}(\lambda)=e^{-\psi_{X}(\lambda)} \mathbb{E}\left[X e^{\lambda X}\right]$ exists and is continuous in λ on \mathbb{R}.
Furthermore, using similar application of DCT we can extend to $\lambda \in \mathbb{C}$ and show that $\lambda \mapsto \mathbb{E}\left[e^{\lambda X}\right]$ is a holomorphic function. Thus it is infinitely differentiable.
4.

$$
a \leq X \leq b \Rightarrow \psi_{X}^{\prime}(\lambda)=\frac{\mathbb{E}\left[X e^{\lambda X}\right]}{\mathbb{E}\left[e^{\lambda X}\right]} \epsilon[a, b] .
$$

5. Suppose $P_{X}[X>B]>0$ (for contradiction), then $P_{X}[X>B+2 \epsilon]>0$ for some small $\epsilon>0$. But then $P_{\lambda}[X \leq B+\epsilon] \rightarrow 0$ for $\lambda \rightarrow \infty$ (see Theorem 11.4.3 below). On the other hand, we know from Theorem 11.4.2 that $\mathbb{E}_{P_{\lambda}}[X]=\psi_{X}^{\prime}(\lambda) \leq B$. This is not yet a contradiction, since P_{λ} might still have some very small mass at a very negative value. To show that this cannot happen, we first assume that $B-\epsilon>0$ (otherwise just replace X with $X-2 B$). Next note that

$$
\begin{align*}
B \geq \mathbb{E}_{P_{\lambda}}[X] & =\mathbb{E}_{P_{\lambda}}\left[X \mathbf{1}_{\{X<B-\epsilon\}}\right]+\mathbb{E}_{P_{\lambda}}\left[X \mathbf{1}_{\{B-\epsilon \leq X \leq B+\epsilon\}}\right]+\mathbb{E}_{P_{\lambda}}\left[X \mathbf{1}_{\{X>B+\epsilon\}}\right] \\
& \geq \mathbb{E}_{P_{\lambda}}\left[X \mathbf{1}_{\{X<B-\epsilon\}}\right]+\mathbb{E}_{P_{\lambda}}\left[X \mathbf{1}_{\{X>B+\epsilon\}}\right] \\
& \geq-\mathbb{E}_{P_{\lambda}}\left[|X| \mathbf{1}_{\{X<B-\epsilon\}}\right]+(B+\epsilon) \underbrace{P_{\lambda}[X>B+\epsilon]}_{\rightarrow 1} \tag{11.4}
\end{align*}
$$

therefore we will obtain a contradiction if we can show that $\mathbb{E}_{P_{\lambda}}\left[|X| \mathbf{1}_{\{X<B-\epsilon\}}\right] \rightarrow 0$ as $\lambda \rightarrow \infty$. To that end, notice that convexity of ψ_{X} implies that $\psi_{X}^{\prime} \nearrow B$. Thus, for all $\lambda \geq \lambda_{0}$ we have $\psi_{X}^{\prime}(\lambda) \geq B-\frac{\epsilon}{2}$. Thus, we have for all $\lambda \geq \lambda_{0}$

$$
\begin{equation*}
\psi_{X}(\lambda) \geq \psi_{X}\left(\lambda_{0}\right)+\left(\lambda-\lambda_{0}\right)\left(B-\frac{\epsilon}{2}\right)=c+\lambda\left(B-\frac{\epsilon}{2}\right), \tag{11.5}
\end{equation*}
$$

for some constant c. Then,

$$
\begin{align*}
\mathbb{E}_{P_{\lambda}}[|X| 1\{X<B-\epsilon\}] & =\mathbb{E}\left[|X| e^{\lambda X-\psi_{X}(\lambda)} 1\{X<B-\epsilon\}\right] \tag{11.6}\\
& \leq \mathbb{E}\left[|X| e^{\lambda X-c-\lambda\left(B-\frac{\epsilon}{2}\right)} 1\{X<B-\epsilon\}\right] \tag{11.7}\\
& \leq \mathbb{E}\left[|X| e^{\lambda(B-\epsilon)-c-\lambda\left(B-\frac{\epsilon}{2}\right)}\right] \tag{11.8}\\
& =\mathbb{E}[|X|] e^{-\lambda \frac{\epsilon}{2}-c} \rightarrow 0 \quad \lambda \rightarrow \infty \tag{11.9}
\end{align*}
$$

where the first inequality is from (11.5) and the second from $X<B-\epsilon$. Thus, the first term in (11.4) goes to 0 implying the desired contradiction.
6. Suppose ψ_{X} is not strictly convex. Since we know that ψ_{X} is convex, then ψ_{X} must be "flat" (affine) near some point, i.e., there exists a small neighborhood of some λ_{0} such that $\psi_{X}\left(\lambda_{0}+u\right)=\psi_{X}\left(\lambda_{0}\right)+u r$ for some $r \in \mathbb{R}$. Then $\psi_{P_{\lambda}}(u)=u r$ for all u in small neighborhood of zero, or equivalently $\mathbb{E}_{P_{\lambda}}\left[e^{u(X-r)}\right]=1$ for u small. The following Lemma 11.1 implies $P_{\lambda}[X=r]=1$, but then $P[X=r]=1$, contradicting the assumption $X \neq$ const.

Lemma 11.1. $\mathbb{E}\left[e^{u S}\right]=1$ for all $u \in(-\epsilon, \epsilon)$ then $S=0$.
Proof. Expand in Taylor series around $u=0$ to obtain $E[S]=0, E\left[S^{2}\right]=0$. Alternatively, we can extend the argument we gave for differentiating $\psi_{X}(\lambda)$ to show that the function $z \mapsto \mathbb{E}\left[e^{z S}\right]$ is holomorphic on the entire complex plane $-\frac{1}{}$. Thus by uniqueness, $\mathbb{E}\left[e^{u S}\right]=1$ for all u.

Definition 11.4 (Rate function). The rate function $\psi_{X}^{*}: \mathbb{R} \rightarrow \mathbb{R} \cup\{+\infty\}$ is given by the LegendreFenchel transform of the log MGF:

$$
\begin{equation*}
\psi_{X}^{*}(\gamma)=\sup _{\lambda \in \mathbb{R}} \lambda \gamma-\psi_{X}(\lambda) \tag{11.10}
\end{equation*}
$$

Note: The maximization (11.10) is a nice convex optimization problem since ψ_{X} is strictly convex, so we are maximizing a strictly concave function. So we can find the maximum by taking the derivative and finding the stationary point. In fact, ψ_{X}^{*} is the dual of ψ_{X} in the sense of convex analysis.

Theorem 11.3 (Properties of ψ_{X}^{*}).

1. Let $A=\operatorname{essinf} X$ and $B=\operatorname{esssup} X$. Then

$$
\psi_{X}^{*}(\gamma)=\left\{\begin{array}{cc}
\lambda \gamma-\psi_{X}(\lambda) \text { for some } \lambda \text { s.t. } \gamma=\psi_{X}^{\prime}(\lambda), & A<\gamma<B \\
\log \frac{1}{P(X=\gamma)} & \gamma=A \text { or } B \\
+\infty, & \gamma<A \text { or } \gamma>B
\end{array}\right.
$$

2. ψ_{X}^{*} is strictly convex and strictly positive except $\psi_{X}^{*}(\mathbb{E}[X])=0$.
3. ψ_{X}^{*} is decreasing when $\gamma \in(A, \mathbb{E}[X])$, and increasing when $\gamma \in[\mathbb{E}[X], B)$
[^0]Proof. By Theorem 11.2.4, since $A \leq X \leq B$ a.s., we have $A \leq \psi_{X}^{\prime} \leq B$. When $\gamma \in(A, B)$, the strictly concave function $\lambda \mapsto \lambda \gamma-\psi_{X}(\lambda)$ has a single stationary point which achieves the unique maximum. When $\gamma>B$ (resp. <A), $\lambda \mapsto \lambda \gamma-\psi_{X}(\lambda)$ increases (resp. decreases) without bounds. When $\gamma=B$, since $X \leq B$ a.s., we have

$$
\begin{aligned}
\psi_{X}^{*}(B) & =\sup _{\lambda \in \mathbb{R}} \lambda B-\log (\mathbb{E}[\exp (\lambda X)])=-\log \inf _{\lambda \in \mathbb{R}} \mathbb{E}[\exp (\lambda(X-B))] \\
& =-\log \lim _{\lambda \rightarrow \infty} \mathbb{E}[\exp (\lambda(X-B))]=-\log P(X=B),
\end{aligned}
$$

by monotone convergence theorem.
By Theorem 11.2.6, since ψ_{X} is strictly convex, the derivative of ψ_{X} and ψ_{X}^{*} are inverse to each other. Hence ψ_{X}^{*} is strictly convex. Since $\psi_{X}(0)=0$, we have $\psi_{X}^{*}(\gamma) \geq 0$. Moreover, $\psi_{X}^{*}(\mathbb{E}[X])=0$ follows from $\mathbb{E}[X]=\psi_{X}^{\prime}(0)$.

11.3.2 Tilted distribution

As early as in Lecture 3, we have already introduced tilting in the proof of Donsker-Varadhan's variational characterization of divergence (Theorem 3.6). Let us formally define it now.

Definition 11.5 (Tilting). Given $X \sim P$, the tilted measure P_{λ} is defined by

$$
\begin{equation*}
P_{\lambda}(d x)=\frac{e^{\lambda x}}{\mathbb{E}\left[e^{\lambda X}\right]} P(d x)=e^{\lambda x-\psi_{X}(\lambda)} P(d x) \tag{11.11}
\end{equation*}
$$

In other words, if P has a pdf p, then the pdf of P_{λ} is given by $p_{\lambda}(x)=e^{\lambda x-\psi_{X}(\lambda)} p(x)$.
Note: The set of distributions $\left\{P_{\lambda}: \lambda \in \mathbb{R}\right\}$ parametrized by λ is called a standard exponential family, a very useful model in statistics. See [Bro86, p. 13].
Example:

- Gaussian: $P=\mathcal{N}(0,1)$ with density $p(x)=\frac{1}{\sqrt{2 \pi}} \exp \left(-x^{2} / 2\right)$. Then P_{λ} has density $\frac{\exp (\lambda x)}{\exp \left(\lambda^{2} / 2\right)} \frac{1}{\sqrt{2 \pi}} \exp \left(-x^{2} / 2\right)=\frac{1}{\sqrt{2 \pi}} \exp \left(-(x-\lambda)^{2} / 2\right)$. Hence $P_{\lambda}=\mathcal{N}(\lambda, 1)$.
- Binary: P is uniform on $\{ \pm 1\}$. Then $P_{\lambda}(1)=\frac{e^{\lambda}}{e^{\lambda}+e^{-\lambda}}$ which puts more (resp. less) mass on 1 if $\lambda>0$ (resp. <0). Moreover, $P_{\lambda} \xrightarrow{\mathrm{D}} \delta_{1}$ if $\lambda \rightarrow \infty$ or δ_{-1} if $\lambda \rightarrow-\infty$.
- Uniform: P is uniform on $[0,1]$. Then P_{λ} is also supported on [0,1] with pdf $p_{\lambda}(x)=\frac{\lambda \exp (\lambda x)}{e^{\lambda}-1}$. Therefore as λ increases, P_{λ} becomes increasingly concentrated near 1, and $P_{\lambda} \rightarrow \delta_{1}$ as $\lambda \rightarrow \infty$. Similarly, $P_{\lambda} \rightarrow \delta_{0}$ as $\lambda \rightarrow-\infty$.

So we see that P_{λ} shifts the mean of P to the right (resp. left) when $\lambda>0$ (resp. <0). Indeed, this is a general property of tilting.
Theorem 11.4 (Properties of P_{λ}).

1. $\log M G F$:

$$
\psi_{P_{\lambda}}(u)=\psi_{X}(\lambda+u)-\psi_{X}(\lambda)
$$

2. Tilting trades mean for divergence:

$$
\begin{gather*}
\mathbb{E}_{P_{\lambda}}[X]=\psi_{X}^{\prime}(\lambda) \gtrless \mathbb{E}_{P}[X] \text { if } \lambda \gtrless 0 . \tag{11.12}\\
D\left(P_{\lambda} \| P\right)=\psi_{X}^{*}\left(\psi_{X}^{\prime}(\lambda)\right)=\psi_{X}^{*}\left(\mathbb{E}_{P_{\lambda}}[X]\right) . \tag{11.13}
\end{gather*}
$$

3.

$$
\begin{aligned}
& P(X>b)>0 \Rightarrow \forall \epsilon>0, P_{\lambda}(X \leq b-\epsilon) \rightarrow 0 \text { as } \lambda \rightarrow \infty \\
& P(X<a)>0 \Rightarrow \forall \epsilon>0, P_{\lambda}(X \geq a+\epsilon) \rightarrow 0 \text { as } \lambda \rightarrow-\infty
\end{aligned}
$$

Therefore if $X_{\lambda} \sim P_{\lambda}$, then $X_{\lambda} \xrightarrow{\mathrm{D}} \operatorname{essinf} X=A$ as $\lambda \rightarrow-\infty$ and $X_{\lambda} \xrightarrow{\mathrm{D}} \operatorname{esssup} X=B$ as $\lambda \rightarrow \infty$.
Proof. 1. By definition. (DIY)
2. $\mathbb{E}_{P_{\lambda}}[X]=\frac{\mathbb{E}[X \exp (\lambda X)]}{\mathbb{E}[\exp (\lambda X)]}=\psi_{X}^{\prime}(\lambda)$, which is strictly increasing in λ, with $\psi_{X}^{\prime}(0)=\mathbb{E}_{P}[X]$.
$D\left(P_{\lambda} \| P\right)=\mathbb{E}_{P_{\lambda}} \log \frac{d P_{\lambda}}{d P}=\mathbb{E}_{P_{\lambda}} \log \frac{\exp (\lambda X)}{\mathbb{E}[\exp (\lambda X)]}=\lambda \mathbb{E}_{P_{\lambda}}[X]-\psi_{X}(\lambda)=\lambda \psi_{X}^{\prime}(\lambda)-\psi_{X}(\lambda)=\psi_{X}^{*}\left(\psi_{X}^{\prime}(\lambda)\right)$, where the last equality follows from Theorem 11.3.1.
3.

$$
\begin{aligned}
P_{\lambda}(X \leq b-\epsilon) & =\mathbb{E}_{P}\left[e^{\lambda X-\psi_{X}(\lambda)} \mathbf{1}[X \leq b-\epsilon]\right] \\
& \leq \mathbb{E}_{P}\left[e^{\lambda(b-\epsilon)-\psi_{X}(\lambda)} \mathbf{1}[X \leq b-\epsilon]\right] \\
& \leq e^{-\lambda \epsilon} e^{\lambda b-\psi_{X}(\lambda)} \\
& \leq \frac{e^{-\lambda \epsilon}}{P[X>b]} \rightarrow 0 \text { as } \lambda \rightarrow \infty
\end{aligned}
$$

where the last inequality is due to the usual Chernoff bound (Theorem 11.2.7): $P[X>b] \leq$ $\exp \left(-\lambda b+\psi_{X}(\lambda)\right)$.

MIT OpenCourseWare
https://ocw.mit.edu

6.441 Information Theory

Spring 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

[^0]: ${ }^{1}$ More precisely, if we only know that $\mathbb{E}\left[e^{\lambda S}\right]$ is finite for $|\lambda| \leq 1$ then the function $z \mapsto \mathbb{E}\left[e^{z S}\right]$ is holomorphic in the vertical strip $\{z:|\operatorname{Re} z|<1\}$.

