
§ 13. Hypothesis testing asymptotics II

Setup:

H0 ∶X
n ∼ P n

∶

X

X

n

n
ecification:

→

H1 ∶X ∼ QX (i.i.d.

test PZ

)

∣
n

Xn

n
sp

{

n

0,1

1 − α = π
(

2
1

}

)
∣0 ≤ −nE0 β = π

0
( )
∣1 ≤ 2−nE1

Bounds:

• achievability (Neyman Pearson)

α = 1 − π1∣0 = PXn[Fn > τ], β = π0∣1 = QXn[Fn > τ

• converse (strong)

]

∀(α,β) achievable, α − γβ

where

≤ PXn[F > log γ]

F =
dPXn

log
dQ

(Xn ,
Xn

)

13.1 (E0,E1)-Tradeoff

Goal:
1 α 2

Our

−nE0 , β 2

goal

−nE1 .

in the Chernoff regime is to find the best tradeoff, which we formally define as follows
(compare to Stein’s exponent in Lectur

−

e 11

≤

)

≤

E1
∗(E0) ≜ sup{E1 ∶ ∃n0,∀n ≥ n0,

1
lim

∃PZ∣Xn s.t. α > 1 − 2−nE0 , β < 2−nE1 ,}

= inf
n→∞ n

log
1

β1−2−nE0 (Pn,Qn)

Define

T = log
dQ dQ

X
dP

( ), Tk = log
dP

(Xk), thus log
dQn n

Xn Tk
dPn k 1

Log MGF of T under P (again assumed to be finite and also T

( ) = ∑
=

≠ const since P ≠ Q):

ψP (λ) = logEP [eλT ]

ψP θ

= log∑P (x 1−λQ x λ log dP 1 dQ

∗ ( )

x

−λ λ

= sup
∈
θλ − ψP

R

) ( ) = ( ( )

λ

∫ )

(λ)
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Note that since ψP (0) = ψP (1) =

≪ ≪

0 from convexity ψP λ is finite on 0 λ 1. Furthermore,
assuming

( )

P Q and Q P we also have that λ ψP λ continuous everywhere on 0,1 (
on 0,1 it follows from convexity, but for boundary poin

( )

ts we need more

≤

detailed

≤

arguments).
Consequently, all the results in this section apply under

↦

just

(

the

)

conditions of P Q and Q

[ ]

P .
However, since in previous lecture we were assuming that log-MGF exists for all

≪

λ, we will
≪

only
present proofs under this

Theorem 13.1. Let P ≪

extra assumption.

Q, Q≪ P , then

E0(θ

p

) = ψP
∗ (θ), E1

arametrized by

(θ) = ψP
∗ (θ) − θ (13.1)

achievable E0,E1

Note: The geometric

−

( )

D θ
.
(P ∥Q) ≤ ≤ D Q P characterizes the best exponents on the boundary of

interp
( )

retation
∗ (

of

(

the

∥

ab

)

ove theorem is shown in the following picture, which rely
on the properties of ψP λ and
(Properties of ψX

∗ ), θ θ
) ( ) = ) =

↦ E0

(

( )

ψP θ . Note that
↦

ψ
(
P

)

0 ψP 1 0. Moreover, by Theorem 11.3
is increasing, θ E1 θ is decreasing.

Remark 13.1 (Rényi divergence). Rényi defined a family of divergence indexed by λ ≠ 1

Dλ(P ∥Q) ≜
1

λ − 1
logEQ [(

dP

dQ
)
λ

] ≥ 0.

which generalizes Kullback-Leibler ( ∥ ) Ð
λ
Ð
→
→
1

( ∥ )

( − ) ( ∥ ) = − ( ∥ )

divergence since Dλ P Q D P Q . Note that ψP λ
λ 1 Dλ Q P λD1−λ P Q . This

′
pro
( )

vides
= −

another
( ∥ )

explanation
′ ( ) =

that
(

ψ
∥
P is negative between 0

and 1, and the slope at endpoints is: ψP 0 D P Q and ψP 1 D Q P .

( ) =

Corollary 13.1 (Bayesian criterion). Fix a prior π0, π1 such that π0 π1 1 and 0 π0 1.
Denote the optimal Bayesian (average) error probability

)

(

by
) + = < <

Pe
∗(n) ≜ inf π π π π

PZ∣

0 1
n

∣0
X

+ 1 0∣1

with exponent

≜
1

E lim
n→∞ n

log
1

.
Pe
∗(n

Then
E

)

= max min(E0(θ),E1(θ)) = ψP
∗ (0) = − inf

∈
ψP λ ,

θ λ R

regardless of the prior, and ψP
∗ (0 C

( )

) ≜ (P,Q) is called the Chernoff exponent.
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Proof of Theorem 13.1. The idea is to apply the large deviation theory to iid sum n
k 1 Tk. Specifi-

cally, let’s rewrite the bounds in terms of T :
∑ =

• Achievability (Neyman Pearson)

let τ = −
n

nθ,
(n) n

∣ =
n

π P [ T
k

∑
=

k nθ
0

1

≥ ] π
1 0

( )
∣1 = Q [

k

∑
=
Tk

1

< nθ]

• Converse (strong)

let γ = 2−nθ, π1∣0 + 2−nθπ0∣1 ≥ P [∑
n

k=
Tk nθ

1

≥ ]

Achievability: Using Neyman Pearson test, for fixed τ = −nθ, apply the large deviation
theorem:

1 − α = π
(

∑
n

n) (
∣ = P [ n)

=
T ≥ nθ] = 2−nψ

∗ oP (θ
k

)+ , for θ T
0

EP D P Q
1

k 1

=
( n
n
∣

nψ θ o nβ π Q T nθ 2 Q

≥ = − (

P

∥ )

k , for θ QT D Q
0 1

)

k

( )+

=1

)

Notice that b

[

of

∑
− (

y the

=
∗

E

definition T we

<

hav

]

e

= ≤ = ( ∥ )

ψ (λ) = logE eλ log Q P

⇒

Q Q logEP e λ 1 log Q P ψP λ 1

ψQ
∗ (θ) = sup

∈
θλ

[

ψP

(

λ

/

1

)] =

ψP θ

/

R

[ ( + ) ( )

λ

∗ θ

] = ( + )

thus E0,E1 in (13.1) is achievabl

−

e.

( + ) = ( ) −

(

Con
(

verse:
)

We want to show that any achievable (

(

E )

) ( ))
0,E1 pair must be below the curve

E0 θ ,E1 θ in the above Neyman-Pearson test with parameter θ. Apply the strong converse
bound we have:

2−nE0 + 2−nθ2−nE1 ≥ 2−nψ
∗ (θ)+o nP

⇒min(E0,E

≤

1 + θ) ≤

(

ψP
∗

∗
(θ), ∀

⇒ ) ≤

n,
∗
θ

(

,

)

D P Q θ D Q P

either E0 ψP θ or E1 ψP

(

θ

∥ ) ≤ ≤ ( ∥ )

(θ

−

) −

13.2 Equivalent forms of Theorem 13.1

Alternatively, the optimal (E0,E1)-tradeoff can be stated in the following equivalent forms:

Theorem 13.2. 1. The optimal exponents are given (parametrically) in terms of λ 0,1 as

E0 =D(Pλ P , E1 D Pλ Q

∈ [

(13.2)

]

wher
=

e the distribution Pλ is tilting of P

∥

along

)

T , cf.

=

(12.14

( ∥

),

)

which moves from P0 P to
P1 Q as λ ranges from 0 to 1:

=

dPλ = (dP )1−λ(dQ)λ exp
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2. Yet another characterization of the boundary is

E1
∗(E0) = min

Q′∶D(Q′
D Q

P E0

′ Q , 0 E0 D Q P (13.3)

Proof. The first part is verified trivially. Indeed,

∥ )≤

if

(

we

∥

fix

)

λ and let

≤

θ

≤

(λ) ≜ E

(

P

∥

λ
[T

)

], then from (11.13)
we have

D(Pλ∥P

whereas

) = ψP
∗ (θ) ,

D(Pλ∥Q) = EPλ[
dPλ

log
dQ

] = EPλ[log
dPλ
dP

dP
D Pλ P EPλ T ψP

∗ θ θ .
dQ

Also
( ∥

from
)

(11.12) we know that as λ ranges in 0, 1 the

] =

mean

(

θ

∥ )

E

−

P

[ ] =

λ
T ranges from

( ) −

D P Q to
D Q P .

To prove the secon
=

d claim (13.3), the key observ

[ ]

ation is the

=

following:

[ ]

Since Q is itself

− (

a

∥

tilting

)

of P along T (with λ 1), the following two families of distributions

dPλ

dQλ′

= { − ( )} ⋅

are in fact the same family with Qλ P

=

exp

{

λT
′ −

ψP

(

λ dP (13.4)

exp λ T ψQ λ′)} ⋅ dQ (13.5)

λ

ose Q∗
1.

Now, supp that achieves

′

the
=

minim

′+
um in (13.3) and that Q Q, Q P (these cases

should be verified separately). Note that we have not shown that this minim

∗

um

∗

is achieved, but it
will be clear that our argument can be extended to the case of when Qn is

≠

a sequen

≠

ce achieving the
infimum. Then, on one hand, obviously

′

D(Q∗∥Q) = min
Q′∶

D Q Q D P Q
D Q′ P E0

′

On the other hand, since E0 ≤D(Q∥P ) we

(

also

∥ )≤

have

( ∥ ) ≤ ( ∥ )

D(Q∗∥P

Therefore,

) ≤D(Q∥P ) .

EQ∗[T ] = EQ∗[
dQ

log
∗

dP

dQ

dQ∗ ] =D(Q∗∥P ) −D(Q∗∥Q) ∈ [−D(P ∥Q),D(Q∥P )] . (13.6)

Next, we have from Corollary 12.1 that there exists a unique Pλ with the following three properties:1

EPλ[T ] =

( ∥ ) ≤

EQ
D P

∗

λ P D

D P

[

λ

(Q

Q D Q

∗
T ]

∥

(13.7)

∗
P (13.8)

Q

)

(13.9)

Thus, we immediately conclude that minimization

( ∥ ) ≤

in

(

(13.3

∥

)

)

{ ∈ }

can be restricted to Q belonging to the
family of tilted distributions Pλ, λ R . Furthermore, from (13.6) we also conclude

∗

that λ 0,1 .
Hence, characterization of E1

∗
∈ [ ]

(E0) given by (13.2) coincides with the one given by (13.3).

1Small subtlety: In Corollary 12.1 we ask EQ∗[T ] ∈ (A,B). But A,B – the essential range of T – depend on the
distribution under which the essential range is computed, cf. (12.10). Fortunately, we have Q P and P Q, so
essential range is the same under both P and Q. And furthermore (13.6) implies that EQ∗

≪ ≪
[T
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Note: Geometric
−

interpretation of (13.3) is as follows: As λ increases from 0 to 1, or equivalently,
θ increases from D P Q to D Q P , the optimal distribution traverses down the curve. This
curve is in essense a geodesic connecting P to Q and exponents E0,E1 measure distances to P and
Q. It may initially sou

(

nd

∥

stran

)

ge

(

that

∥ )

the sum of distances to endpoints actually varies along the
geodesic, but it is a natural phenomenon: just consider the unit circle with metric induced by the
ambient Euclidean metric. Than if p and
point to endpoints do not sum up to d(

q are two antipodal points, the distance from intermediate
p, q) = 2.

13.3* Sequential Hypothesis Testing

Review: Filtrations, stopping times

• A sequence of nested σ-algebras F0 ⊂ F1 ⊂ F2⋯ ⊂ Fn⋯ ⊂ F

F

is called a filtration of
.

• A random variable τ is
Z+ and b) for every n ≥

called a stopping time of a filtration n if a) τ is valued in
0 the event

F

{τ ≤ n

-algebra

∈ Fn.

• The σ

}

Fτ consists of all events E such that E ∩ {τ ≤ n n for all n 0.

• When Fn = σ{X1, . . . ,Xn} the interpretation is that τ is a time

} ∈

that

F

can be deter-

≥

mined by causally observing the sequence Xj , and random variables measurable
with respect to F

(
τ are precisely

of knowing X1, . . . ,Xτ

• Let Mn be a martingale

)

those whose value can be determined on the basis
.

adapted to F
=

n, i.e. Mn is

(
n-measurable and E M

)
n k

˜Mmin n,k . Then Mn Mmin n,τ is also a martingale. If collection Mn is uniformly
integrable then

( )

F [ ∣F ] =

E

{ }

[Mτ E M0 .

• For more details, see [Ç11, Chapter V].

] = [ ]
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Different realizations of Xk are informative to different levels, the total “information” we receive
follows a random process. Therefore,

(

instead of fixing the sample size n, we can make n a stopping
time τ , which gives a “better” E0,E1

•

) tradeoff. Solution is the concept of sequential test:

Informally: Sequential test Z at each step declares either “H0”, “H1” or “give me one more
sample”.

• Rigorous
F

defi
≜

nition
{

is as follo
}

ws: A sequential hypothesis
∈ {

tes
}

t is a stopping time τ of the

F

filtration n σ X1, . . . ,Xn and a random variable Z 0,1 measurable with respect to

τ .

• Each sequential test has the following performance metrics:

α P Z

l0

= [ = ] = [ = ]

= EP[τ

The easiest way to see why sequential tests

]

0 , β Q Z 0 (13.10)

, l1 EQ τ (13.11)

=

may b

=

e dramatically

[ ]

superior to fixed-sample size
tests is the following example: Consider P 1

2δ0 +
1
2δ1 and Q = 1

2δ0 +
1

⊥/

δ 1. Since P Q, we also2
have Pn Qn. Consequently, no finite-sample-size test can achieve zero

−
error rates under both

hypotheses. However, an obvious sequential test (wait for the first appearance of 1) ac

⊥/

hieves zero
error probability with finite average number of samples (2) under both hypotheses.

±

This advantage
is also seem very clearly in achievable error exponents.

Theorem 13.3. Assume bounded LLR:2

∣
P

log
(x)

c0, x
Q x

where c0 is some positive constant. If the error

(

pr

)
∣

ob

≤

abilities

∀

satisfy:

π1∣0 ≤ 2−l0E0 , π0∣
l1E1

1 2−

for large l0, l1, then the following inequality for the exponents

≤

holds

E0E1 ≤D(P ∥Q)D(Q∥P ).

2This assumption is satisfied for discrete distributions on finite spaces.
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with optimal boundary achieved by the sequential probability ratio test SPRT(A,B) (A, B are large
positive numbers) defined as follows:

τ = inf{n ∶ Sn B or Sn A

τ B
Z = {

0, if S
1, if S

≥ ≤ − }

τ

≥

< −A

where

Sn = ∑
n P

k=
log

1

(Xk)

Q(Xk

is the log likelihood function of the first k observations.

)

Note: (Intuition on SPRT) Under the usual hypothesis testing setup, we collect n samples, evaluate
the LLR Sn, and

{

compare
∶ ≥ }

it to the threshold to give the optimal test. Under the sequential setup
with iid

−

data,
( ∥ )

Sn n 1 is a random walk, which has positive (resp. negative) drift D P Q
(resp. D Q P ) under the null (resp. alternative)! SPRT test simply declare P if the random
walk crosses the upper boundary B, or Q if the random walk crosses the upper boundary

( ∥ )

−A.

Proof. As preparation we show two useful identities:

• For any stopping time with EP [τ] <∞ we have

EP [Sτ ] = EP [τ

and

]D(P ∥Q) (13.12)

similarly, if EQ[τ] <∞ then

EQ[Sτ ] = −EQ[τ]D(Q∥P ) .

To prove these, notice that
Mn = Sn − nD(P

is

∥Q

clearly a martingale w.r.t.

)

Fn. Consequently,

M̃n ≜Mmin

is also a martingale. Thus

(τ,n)

E M̃n E M̃0 0 ,

or, equivalently,

[ ] = [ ] =

E[Smin τ,n

This holds for every n 0. From

(

b

)

∣

oun

] = E[min(τ, n)]D(P ∥Q) . (13.13)

dedness assumption we have Sn nc and thus
Smin(n,τ)

≥ ∣

∣ ≤

→

nτ
∞

, implying that collection {Smin(n,τ), n ≥ 0} is uniformly integrable.
in

∣

Th
can

≤

us, we
take n (13.13) and interchange expectation and limit safely to conclude (13.12).

• Let τ be a stopping time. The Radon-Nikodym derivative of P w.r.t. Q on σ-algebra Fτ is
given by

dP∣Fτ exp
dQ∣Fτ

w

= Sτ} .

Indeed, what e need to verify is that for every ev

{

ent E

E

∈ Fτ we have

P [1E] = EQ[exp{Sτ}1E] (13.14)
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To that end, consider a decomposition

1E 1E
n 0

∩{τ=n} .

By monotone convergence theorem applied

= ∑

to

≥

(13.14) it is sufficient to verify that for every n

EP [1E∩{τ n EQ exp Sτ 1E τ n . (13.15)

dP
This, however, follows from the fact

=

th

}

at

] =

E

[ } ∩{ = }]

∩ {τ

{

= n} ∈ F and
∣Fn

n expQ∣Fn
= {Sn} by the veryd

definition of Sn.

We now proceed to the proof. For achievability we apply (13.14) to infer

π1∣0 = P[Sτ ≤ −A]

= EQ[exp{Sτ}1{S
−

τ ≤ −A

e A

}]

Next, we denot τ0 = inf{n ∶ Sn ≥ B and observe that τ τ0, whereas expectation of τ0 we estimate
from (13.12):

≤

EP

} ≤

[τ] ≤ EP [τ0] = EP [Sτ0] ≤ B + c0 ,

where in the last step we used the boundedness assumption to infer

Sτ0 ≤ B + c0

Thus

l0 = EP[τ] ≤ EP[τ0] ≤
B + c0

D(P ∥Q)
≈

B

D(P ∥Q)
for large B

Similarly we can show π0∣1 ≤ e
−B and l1 ≤

A
D(Q∥P

this shows the achievability.
) for large A. TakeB = l0D(P ∥Q),A = l1D(Q∥P ),

Converse: Assume (E0,E1) achievable for large l0, l1 and apply data processing inequality of
divergence:

d(P(Z = 1)∥Q(Z = 1)) ≤D

EP

(P∥Q)∣

= [

Fτ
Sτ ] = EP[τ]D(P ∥Q) from (13.12)

l0D P Q

notice
( ∥

that
)

for l0E0 and l1E1 large,

= (

we

∥

ha

)

≲

ve d P Z 1 Q Z 1 l1E1, therefore l1E1

l0D P Q . Similarly we can show that l E l D Q P , finally we have

E0E1 ≤D(

0 0 1

P ∥Q)D(Q

( ( = )∥ ( = )) ≈ ≲

( ∥ )

∥P ), as l0, l1 →∞
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