
§ 14. Channel coding

Objects of study so far:

1. PX - Single distribution, Compression

2. PX vs QX - Comparing two distributions, Hypothesis testing

3. Now: PY ∣X (called a random transformation) - A collection of distributions

14.1 Channel

∶ X →

Co

Y

ding

Definition 14.1. An M -code for PY ∣X is an encoder/decoder pair (f, g) of (randomized) functions1

• encoder f ∶ [M

• decoder g

]→ X

∶ Y → [M e

Notation: [M] ≜ {1,

]

. .

∪

.

{

,M

}

}.
In most cases f and g are deterministic functions, in which case we think of them (equivalently)

in terms of codewords, codebooks, and decoding regions

• ∀i

• i

∈ [M] ∶ ci = f(i are codewords, the collection c1, . . . , cM is called a codebook.

∀ ∈ [M],D = g−1
i

) C = { }

({i}) is the decoding region for i.
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Figure 14.1: When X = Y, the decoding regions can be pictured as a partition of the space, each
containing one codeword.

Note: The underlying probability space for channel coding problems will always be

Ð
f
→

P
Ð
Y
→
∣X

Ð
g

W X Y → Ŵ

1For randomized encoder/decoders, we identify f and g as probability transition kernels PX∣W and PŴ ∣Y .
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When the source alphabet is [M], the joint distribution is given by:

(general) P ˆWXYW (m,a, b, m̂) =
1

M
PX ∣W (a∣m)PY ∣X(b∣a)PŴ ∣Y (m̂∣b)

(deterministic f, g) PWXY Ŵ (m,cm, b, m̂) =
1
PY ∣X

e

(b∣cm
M

Throughout the notes, these quantities will b called:

)1{b ∈Dm̂}

• W - Original message

• X - (Induced) Channel input

• Y - Channel output

• Ŵ - Decoded message

14.1.1 Performance Metrics

Three ways to judge the quality of a code in terms of error probability:

1. Pe ≜ P[W =/ Ŵ ] - Average error probability.

2. Pe,max ≜ maxm∈[M] P[Ŵ /=m∣W =m] - Maximum error probability.

3. In the special case when M = 2k, think of W = Sk ∈ Fk2 as a length k bit string. Then the
bit error rate is Pb ≜

1 ∑kj=1 P[Sj =/ Ŝj], which means the average fraction of errors in a k-bitk
block. It is also convenient to introduce in this case the Hamming distance

dH(Sk ˆ, Sk) ≜ #{i ∶ ˆSi ≠ Sj} .

Then, the bit-error rate becomes the normalized expected Hamming distance:

Pb =
1
E dH Sk ˆ, Sk .

k

To distinguish the bit error rate Pb from the

[

previously

( )]

defined Pe and Pe,max, we will also
call the latter the average (resp. max) block error rate.

The most typical metric is average probability of error, but the others will be used occasionally
in the course as well. By definition, Pe Pe,max. Therefore maximum error probability is a more
stringent criterion which offers uniform protection

≤

for all codewords.

14.1.2 Fundamental Limit of PY X

Definition 14.2. A code f, g is an M

∣

, ε -code for PY X if f M , g M e , and
Pe ≤ ε. Similarly, an (M,ε

Then

) ( ) ∣
ε.

the fundamental

(

)max-code must satisfy Pe,max

limits of channel codes are defined

∶ [ ]→ X ∶ Y → [ ] ∪ { }

≤

as

M∗

∗
(ε) = max{M

Mmax ε max M

∶ ∃(

( ) = { ∶ ∃(

M,ε

M, ε

) − }

Remark: log2M gives the maximum number of bits that

)

code

max − code

we can pump

}

through a channel PY X

while still having

∗

the error probability (in the appropriate sense) at most ε.
∣
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Example: The random transformation BSC(n, δ) (binary symmetric channel) is defined as

X = {0,1 n

Y = {0,1

}

}n

where the input Xn is contaminated by additive noise Zn ⊥⊥Xn and the channel outputs

Y n Xn Zn

where Zn
i.i.d.
∼ Bern(δ). Pictorially, the BSC

= ⊕

(n, δ) channel takes a binary sequence length n and flips
the bits independently with probability δ:

0 1 0 0 1 1 0 0 1 1

PY n|Xn

1 1 0 1 0 1 0 0 0 1

Question: When δ = .11, n
Ideas:

= 1000, what is the max number of bits you can send with Pe ≤ 10−3?

0. Can one send 1000
bit =

bits with Pe 10 3? No and apparently the probability that at least one
is flipped is Pe 1

≤

− n

−

(1 − δ) ≈ 1. This implies that uncoded transmission does not meet
our objective and coding is necessary – tradeoff: reduce number of bits to send, increase
probability of success.

1. Take each bit and repeat it l times (l-repetition code).

0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0

f

l

With ma
≤

jorit
=

y decoding, the probabilit
≤ −

y of error of this scheme is Pe kP Binom l, δ l 2
and kl n 1000, which for P 10 3

e gives l 21, k 47 bits.
≈ [ ( ) > / ]

2. Reed-Muller Codes (

(

1,
−

r).
)

Interpret a message

=

a

=

+

r
0, . . . , ar−1 ∈

∑ −
F2 as the polynomial (in this

case, a degree-1 and r 1 -variate polynomial)
−

r 1
i 1 aixi a0, then codewords are formed b

evaluating the polynomial at all possible xr 1 F
bits,

∈ r
2

has minimum distance 2r 2. For r 7, there is

=
−1. This code, which maps r bits to 2r

a 64,7,32 Reed-Muller code and it can

−
y
1

be shown that the MAP
=

≤ ⋅

decoder

−

−
of this code passed over the BSC n 64, δ 0.11 achieves

probability of error 6 10 6. Thus, we can use 16 such

[

blocks

]

(each carrying 7 data bits and
occup

≲

ying
−

64 bits on the channel) o
⋅

ver
=

the BSC 1024, δ , and still h

(

ave

=

(union

=

bound)

)

overall
Pe 10 4. This allows us to send 7 16 112 bits
of

(

in 1024
)

channel uses, more than double that
the repetition code.
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3. Shannon’s theorem (to be shown soon) tells us that over memoryless channel of blocklength n
the fundamental limit satisfies

logM∗ =

)

nC o n (14.1)

as n → ∞ and for arbitrary ε ∈ (0,1 . Here C
single-letter hav

+ ( )

= maxX I
channel. In our case we e

(X1;Y1) is the capacity of the

I(X;Y ) = max I(
1

X;X +Z) = log 2 h
X

− (δ
P

) ≈ bit
2

So Shannon’s expansion (14.1) can be used to predict (non-rigorously, of course) that it should
be possible to send around 500 bits reliably. As it turns out, for this blocklength this is not
quite possible.

4. Even though calculating logM
is doubly exponential in block

∗ is not computationally feasible (searching over all codebooks
length n), we can find bounds on logM that are easy to

compute. We will show later in the course that in fact, for BSC(1000, .11

∗

414 logM∗ 416

)

5. The first codes to approach the bounds on log

≤

M

≤

engine – where exhaust is fed back in to power

∗ are called Turbo codes (after the turbocharger
the engine). This class of codes is known as

sparse graph codes, of which LDPC codes are particularly well studied. As a rule of thumb,
these codes typically approach 80 . . .90% of logM∗ when n ≈ 103 . . .104.

14.2 Basic Results

Recall that the object of our study is M∗(ε) = max

14.2.1

{M ∶ ∃(M,ε) − code}.

Determinism

1. Given any encoder f
(MAP) decoder, or equiv
are equiprobable:

∶ [M]→ X , the decoder that minimizes Pe is the Maximum A Posteriori
alently, the Maximal Likelihood (ML) decoder, since the codewords

g∗(y) = argmax
m∈[M]

P [W =m Y y

argmaxP Y y W

∣ =

m

]

m M

Furthermore, for a fixed f , the MAP

=

deco

∈[

der

]

g

[

is deterministic

= ∣ = ]

2. For given M , PY ∣X , the Pe-minimizing encoder is deterministic.

Proof. Let f M be a random transformation. We can always represent randomized
encoder as deterministic

˜the

∶ [ ]→ X

encoder with auxiliary randomness. So instead of f a m , consider
deterministic encoder f(m,u), that receives external randomness u. Then

(

lo
∣

oking
)

at all
possible values of the randomness,

ˆ ˆPe P W W EU P W W U EU Pe U

Each u in the expectation

=

giv

[

es a

=/

deterministic

] = [ [

enco

=/

der,

∣

hence

] =

there

[ (

is

)]

a deterministic encoder
ˆthat is at least as good as the average of the collection, i.e., ∃u0 s.t. Pe(u0) ≤ P[W ≠W ]
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Remark: If instead we use maximal probability of error as our performance criterion, then
these results

=

don’t hold; randomized encoders and decoders may improve performance. Example:
consider M 2 and we are back to the binary hypotheses testing setup. The optimal decoder (test)
that minimizes

{ −

the maximal Type-I and II error probability, i.e., max 1 α,β , is not deterministic,
if max 1 α,β not

− }

} is achieved at a vertex of the region P,Q .
{

14.2.2 Bit Error Rate vs Block Error Rate

R( )

Now we give a bound on

(

the a

)

verage

=

probabilit

Ô⇒

y of error in terms of the bit error probability.

Theorem 14.1. For all f, g , M 2k Pb ≤ Pe ≤ kPb

Remark: The most often used direction Pb ≥
1
kPe is rather loose for large k.

Proof. Recall that M = 2k gives us the interpretation of W = Sk sequence of bits.

1
∑
k k

ˆ
=

1{ ˆSi =/ Ŝi} ≤ 1 S
k

{Sk =/ k

1

} ≤ 1 Si Si
i i

Where w

∑
1

the first inequality is obvious and the second follo from

=

the

{

union

=/ }

bound. Taking expectation
of the above expression gives the theorem.

Theorem 14.2 (Assouad). If M = 2k then

Pb ≥ min{P[Ŵ = c′W c c, c′ Fk2, dH c, c′ 1 .

Proof. Let ei be a length k vector that is 1

∣

in

=

the

] ∶

i-th p

∈

osition,

(

and

)

zero

= }

everywhere else. Then

∑
k k

ˆ
i=

1 Si Si 1 Sk Ŝk ei
1

Dividing

{ =/ } ≥
i
∑
=1

by k and taking expectation gives

{ = + }

Pb ≥
1

k

k

∑
i=1

P[Sk = Ŝk + ei]

≥ min{P[Ŵ = c′∣W = c] ∶ c, c′ ∈ Fk2, dH(c, c′) = 1} .

Similarly, we can prove the following generalization:

Theorem 14.3. If A,B ∈ Fk2 (with arbitrary marginals!) then for every r ≥ 1 we have

Pb =
1 k
E[dH

B

(A,B)]
1
Pr,min (14.2)

k

=

r

c′∣

1

Pr,min ≜ min{P[ A

≥ (
−

−
)

= c] ∶ c, c′ ∈ Fk2, dH(c, c′

observ

= r} (14.3)

Proof. First, e that

)

P[dH(
k

A,B) = r∣A = a] =
∶
∑
( )=

PB∣A(b∣a) ≥ ( )Pr,min .
rb dH a,b r

Next, notice
dH(x, y) ≥ r1{dH(

∼ ∼

x, y

and

= r

take the expectation with x A, y B.

) }
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Remark: In statistics, Assouad’s Lemma is a useful tool for obtaining lower bounds on the
minimax risk of an estimator. Say the data X is distributed according to Pθ parameterized by θ Rk

ˆ ˆ ˆand let θ θ X be an estimator for θ. The goal is to minimize the maximal risk supθ Θ Eθ θ θ 1 .
ˆA lower b

=

ound
(

(Ba
)

yesian) to this worst-case risk is the average risk E θ θ 1 , where θ is distributed

∈

to any prior. Consider θ uniformly distributed on the hypercube 0, ε k with side length

∈

ε em

[∥

b

−

edded

∥ ]

in the space of parameters. Then

[∥ − ∥ ]

kε

{ }

inf sup E ˆ
θ̂ θ∈{ }

θ
0,ε

[∥ − θ∥1
k

] ≥
4

min
dH(θ,θ′)=1

(1 −TV(Pθ, Pθ′)) . (14.4)

This can be proved using similar ideas to Theorem 14.2. WLOG, assume that ε = 1.

E[∥θ − θ̂∥1]
(a)
≥

1

2
E[∥θ − θ̂dis∥1] =

1
E

2
[dH( ˆθ, θdis)]

≥
1 1ˆ

=
min

i
∑
k

2 = ˆ ˆ1 θi θi(X)
P[θi ≠ θi]

(
=
b)

4

k

∑
i=1

(1 −TV(PX ∣θi=0, PX ∣θi=1))

(c)
≥
k

TV

ˆ

(
min

4 dH θ,θ′)=
1 Pθ, Pθ

1
′ .

ˆ ˆHere θ the

(

dis is discretized version of θ,

−

i.e.

(

the closest

))

∣ − ∣ ≥

point on the hypercube to θ and so
ˆ(a) follows from θi θ 1
i 21{∣θi−θ̂i∣>1/2} = 1

21{θi≠θ̂dis,i}, (b) follows from the optimal binary hy-

pothesis testing for θi given X, (c) follows from the convexity of TV: TV(PX ∣θi=0, PX ∣θi=1) =

TV( 1
2k−1 ∑θ∶θi=0 PX ∣θ,

1
2k−1 ∑θ∶θi=1 PX ∣θ) ≤ 1

k−1 ∑θ∶θi=0 TV(PX ∣θ, PX ∣θ⊕ei)
/
≤ maxdH(θ,θ 1 TV Pθ, Pθ .

2
i ˆ ˆAlternatively, (c) also follows from by providing the extra information θ and allowing

′)=
θi

( )

= θi(X,θ

′

/i

in the second line.
)

14.3 General (Weak) Converse Bounds

Theorem 14.4 (Weak converse).

1. Any M -code for PY ∣X satisfies

Y
log ≤

sup ;
M X I(X ) + h(Pe)

1 − Pe

2. When M = 2k

logM ≤
supX I(X;Y )

log 2 h Pb

Y → ˆProof. (1) Since W →X → W , we have the following

−

c

(

hain

)

of inequalities, cf. Fano’s inequality
Theorem 5.4:

sup I
X

(X;Y ) ≥ I(X;Y ) ≥ I( ˆW ;W )

≥ d(P[W = Ŵ ]∥
1

≥

M
)

−h(P[W =/ Ŵ ]) + P[W = Ŵ ] logM
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→

ˆPlugging in Pe = P[W =/ W finishes the first proof.
(2) Now Sk ˆX → ˆ ˆY

]

→ Sk. Recall from Theorem 5.1 that for iid Sn, ∑ I(Si;S
k

i) ≤ I(S
k;S ).

This gives us

sup I
X

(X;Y ) ≥ S
1

( ˆ
i
∑
k

I(X;Y ) ≥
=
I Si, i)

≥
1

k
k
∑d(P[Si = Ŝi]∥

1

2
)

≥ kd(
1 1

P
i
∑
k

k =1

[Si = Ŝi]∥
2
)

= kd(1 − Pb∥
1

log

5.4

) = k 2 h Pb
2

where the second line used Fano’s inequality (Theorem ) for binary

(

random

− ( ))

variable (or divergence
data processing), and the third line used the convexity of divergence.

14.4 General achievability bounds: Preview

Remark: Regarding differences between information theory and statistics: in statistics, there is
a parametrized set of distributions on a space (determined by the model) from which we try to
estimate the underlying distribution from samples. In data transmission, the challenge is to choose
the structure on the parameter space (channel coding) such that, upon observing a sample, we can
estimate the correct parameter with high probability. With this in mind, it is natural to view

PY
log

∣X=x
PY

as an LLR of a binary hypothesis
=

test,
○

where we compare the hypothesis X x to the distribution
induced by our codebook: PY PY ∣X PX (so compare ci to “everything else”). To decode, we
ask M different questions of this form. This motivates importance of the random

=

variable (called
information density):

i(X;Y ) =
PY

log
∣X(Y ∣X)

PY Y

, where PY = PY ∣X ○ PX . (Note: I(X;Y ) = E i

( )

[ (X;Y )]).

∀

Shortly
∃( )

,
−

we will show a result (Shannon’s Random Coding Theorem), that states: PX ,
τ , M,ε code with

∀

ε ≤ P[i

Details in the next lecture.

(X;Y ) ≤ logM + τ] + e−τ
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