
§ 15. Channel coding: achievability bounds

Notation: in the following proofs, we shall make use of the independent pairs (X,Y ) ⊥⊥ (X,Y )

X → Y (X ∶ sent codeword)

X → Y (X ∶ unsent codeword

The joint distribution is given by:

)

PXYXY (a, b, a, b) = PX(a)PY ∣X(b∣a)PX(a)PY ∣X(b∣a).

15.1 Information density

Definition 15.1 (Information density). Given joint distribution PX,Y we define

iPXY (x; y) =
PY

log
∣X(y∣x)

PY (y)
= log

dPY ∣X=x(y)
(15.1)

dPY y

and we define iPXY x; y for all y in the singular set where PY X x is not absolutely continuous
w.r.t. PY . We also define all

( )

( ) = +∞

iPXY x; y for y such that dPY
∣
X

=
x dPY equals zero. We will

almost always abuse notation and write i x; y dropping the subscript PX,Y , assuming that the
joint distribution defining i ;

(

is clear

) = −∞

from the context.

∣ = /

Notice that i x; y depends on the underlying

(

P

)

(⋅ ⋅)

( ) X and PY ∣X , which should be understood from the
context.

Remark 15.1 (Intuition). Information density is a useful concept in understanding decoding. In
discriminating between two codewords, one concerns with (as we learned in binary hypothesis

P
testing) the LLR, log Y ∣X=c1

( )
∣ =

. In M -ary hypothesis testing, a similar role is played by informationPY X c2

density i c1; y , which, loosely speaking, evaluates the likelihood of c1 against the average likelihood,
or “everything else”, which we model by PY .

Remark 15.2
(⋅ ⋅)

(Joint measurability). There is a measure-theoretic subtlety in (15.1): The so-defined
function i ; may not be a measurable function on the product space . For resolution, see
Section 2.6* and Remark 2.4 in particular.

Remark 15.3 (Alternative definition). Observe that for discrete 15.1

X ×

X ,Y , ( )

Y

is equivalently written
as

i(
X

x; ) =
P ,Y

y log
(x, y)

PX(x)PY (y)
= log

PX ∣Y (x∣y)

PX(x

For the continuous case, people often use the alternative definition,

)

X ×Y

which is symmetric in X and Y
and is measurable w.r.t. :

i(
,Y

x; ) =
dPX

y log x,
dPX × PY

( y) (15.2)
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Notice a subtle difference between (15.1) and (15.2) for the continuous case: In (15.2) the Radon-
Nikodym deriv

( (

ativ
)

e
>

is
)

only defined up to sets of measure zero, therefore whenever PX x 0 the
value of PY i x, Y t is undefined. This problem does not

( ) =

X Y

occur with definition (15.1), and that
is why we prefer it. In any case, for discrete , , or under other regularity conditions, all the
definitions are equivalent.

Proposition 15.1 (Properties of information density).

1. E[i(X;Y )] = I(X;Y ). This justifies the name “(mutual) information density”.

2. If there is a bijective transformation (

( )

X,Y A,B , then almost surely iPXY X;Y
iPAB A;B and in particular, distributions of

)

i
→ (

and
)

(X;Y ) i(A;B coincide.
( ) =

3. (Conditioning and unconditioning trick) Suppose that f

)

(y) =

( ) = −∞

0 and g
i

) = 0 whenever
x; y

(x
, then1

E[

[

f

g(

Y )] = E
E

(

X E
[ {− (

)] = [

exp

{

i X x

i(

x;Y f Y , x (15.3)

exp − X; y

)}

g

(

X

)∣

Y

=

y

]

,

∀

y (15.4)

4. Suppose that f

)} ( )∣ = ] ∀

(x, y) = 0 whenever i(x; y) = −∞, then

E[f(X,Y )] = E[exp{−i(X;Y )}f(X,Y )] (15.5)

E[f(X,Y )] = E[exp{−i(X;Y )}f(X,Y )] (15.6)

Proof. The proof is simply change of measure. For example, to see (15.3), note

Ef(Y ) = ∑
y∈Y

PY (y)f(y) = ∑
y∈Y

PY ∣X(y∣x)
PY (y)

f y
PY X y x

notice
(

that by the assumption on f , the summation is valid

∣

ev

(

en

∣ )

if

(

for

)

some y we have that
PY ∣X y x 0. Similarly, E f x, Y E exp i x;Y f x,Y X x . Integrating over x PX
gives (15.5

)

). The

(⋅)

∣ =

rest are by
[

in
(

terchanging
)] = [

X
{

and
− (

Y .
)} ( )∣ = ] ∼

Corollary 15.1.

P[i(x;Y ) > t] ≤ exp(−t) (15.7)

P[i(X;Y t exp t (15.8)

Proof. Pick f Y

) > ] ≤ (− )

( ) = 1{i(x;Y ) > t} in (15.3).

Remark 15.4. We have used this trick before: For any probability measure P and any measure Q,

Q[ log
dP

t
dQ

≥ ] ≤ exp

h

( t). (15.9)

for example, in yp

−

that ∣{x ∶ logPX(x)
othesis
≥ }∣ ≤

testing
(− )

(Corollary 10.1). In data compression, we frequently used the fact
t exp t , which is also of the form (15.9) with Q = counting measure.

1Note that (15.3) holds when i(x; y) is defined as i = log
dPY ∣X

PY
, and (15.4) holds when i(x; y) is defined as

i = log
dPX∣Y . (15.5) and (15.6) hold under either of the definitions. Since in the following we shall only make use of
PX

(15.3) and (15.5), this is another reason we adopted definition (15.1).
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15.2 Shannon’s achievability bound

Theorem 15.1 (Shannon’s achievability bound). For a given PY ∣X , ∀PX , ∀τ > 0, ∃(M,ε)-code
with

ε ≤ P[i X;Y logM τ exp τ . (15.10)

Proof. Recall that for a given codebo

(

ok

) ≤ + ] + (− )

{c1, . . . , cM}, the optimal decoder is MAP, or equivalently,
ML, since the codewords are equiprobable:

g∗(y) = argmax
∈[ ]

PX
m M

∣Y (cm y

= argmax
∈[ ]

PY ∣X(y c

∣ )

m M
∣ m

argmax i cm; y .

)

m M

The step of selecting the maximum likeliho

=

od

∈[

can

]

mak

(

e an

)

alyzing the error probability difficult.
Similar to what we did in almost loss compression (e.g., Theorem 7.4), the magic in showing the
following two achievability bounds is to consider

(

a
)

suboptimal decoder. In Shannon’s bound, we
consider a threshold-based suboptimal decoder g y as follows:

g(y

Interpretation: i cm; y logM

) = {
m, !cm s.t. i cm; y logM τ
e,

∃ (

o.w.
) ≥ +

τ PX Y cm y M exp τ PX cm , i.e., the likelihood of cm
being the transmitted codeword conditioned on receiving y exceeds some threshold.

For a given co

(

debook

) ≥

(c1, . . . ,

+

c

⇔ ∣

M , the error

(

probabilit

∣ ) ≥

y is:

( ) ( )

Pe(c1, . . . , cM

)

) = P[{i(cW ;Y ) ≤ logM + τ} ∪ {∃m ≠W, i(cm;Y ) > logM τ

where W is uniform on

+ }]

[M].
We generate the codebook (c1, . . . , cM randomly with cm PX i.i.d. for m M . By symmetry,
the error probability averaging over all

)

possible codebooks
∼

is given by:
∈ [ ]

=

E
E
[

[

Pe c1, . . . , cM

= [{

Pe c1, . . . , cM W 1

P i

( )]

( )∣ = ]

(c1;Y ) ≤ logM + τ} ∪ {∃m ≠ 1, i(cm, Y ) > logM + τ}∣W = 1]

≤ P[i(c1;Y ) ≤ logM + τ ∣W = 1] +
M

∑
m=2

P[i(cm;Y ) > logM + τ ∣W = 1] (union bound)

= P [i(X;Y ) ≤ logM + τ] + (M − 1)P [i(

≤ P Y

)

(X;

> + ]

[i ) ≤ logM + τ] + (

X;Y logM τ (random codebook)

M − ) (−(

≤ [ ( ) ≤ + ] + ) +

1

(

exp

− )

logM + τ)) (by Corollary 15.1)

P i X;Y logM τ τ exp τ

Finally, since the error probability averaged over the random codebook satisfies the upper bound,
there must exist some code allocation whose error probability is no larger than the bound.

Remark 15.5 (Typicality).
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• The property of a pair x, y satisfying the condition i x; y γ can be interpreted as “joint
typicality”. Suc

∼

h version of joint typicality is useful when random coding is done in product
spaces with cj PnX (i.e.

(

co

)

ordinates of the codeword

{ (

are iid).

) ≥ }

• A popular alternative to the definition of typicality is to require
≈

that the empirical joint
ˆdistribution is close to the true joint distribution, i.e., Pxn,yn PXY , where

1
P̂xn,yn(a, b) = j

n
⋅#{j ∶ x = a, yj b .

This
{ ∶

definition
≈

is natural for cases when random coding is d

=

one

}

with cj uniform on the set
xn P̂xn PX} (type class).

∼

15.3 Dependence-testing bound

Theorem 15.2 (DT bound). ∀PX , ∃(M,ε)-code with

ε ≤ E [exp{−(i(
1

X; ) −
M

Y log
−

(15.11)
2

)
+

where x

}]

+ ≜ max(x,0).

Proof. For a fixed γ, consider the following suboptimal decoder:

m, for the smallest m s.t. i
g y

(cm; y) ≥ γ
e, o/w

Note that given a codebook

( ) = {

{c1, . . . , cM

P

}, we have by union bound

[Ŵ ≠ j∣W = j] = P[i(cj ;Y

P

) ≤ γ∣W = j

i cj ;Y γ W j

] + P[i ;Y

j−
(cj

1

P i ck

)

;Y

> γ,∃k ∈ [j − 1], s.t. i(ck;Y ) > γ]

Averaging over the randomly

≤ [ (
k

generated

) ≤ ∣

co

=

deb

]

o

+

ok,

∑
=

.
1

[ ( ) > γ∣W = j

the expected error probabilit

]

y is upper bounded
by:

E[
1

Pe(c1, . . . , cM)] =
M

M

∑
j=1

P[Ŵ ≠ j∣W = j]

≤
1 j

P
j
∑
M

M =1

( [i(X;Y ) ≤ γ] +∑
−1

P
k=1

[i(X;Y ) > γ])

= P[i(X;Y ) ≤ γ] +
M − 1

2
P[i(X;Y ) > γ]

= P[i(X;Y ) ≤ γ] +
M − 1

E[

−

exp(−i(X;Y ))1{i(X;Y ) > γ}] (by (15.3))

= E[1{i(
1

X;Y ) ≤ } +

2
M

γ
2

exp(−i(X;Y ))1{i(X,Y ) > γ}]

= E[min (1,
M − 1

2
exp(−i(X;Y )))] (γ = log

M − 1

−

minimizes the upper bound)

=

2

E [exp{−(i(X;Y ) −
M 1

log
2

)
+
}] .
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To optimize over γ, note the simple observation that U1E +

≥ [ ( ) ≤ ] +

V 1{
−

Ec} ≥ min{U,V }, with equality iff

U V on E. Therefore for any x, y, 1 i x; y γ M 1
2 e−i(x;y)1[i(x; y) > γ] ≥ min(1, M−1

2 e−i(x;y)),

achieved by γ = log M−1
2 regardless of x, y.

Note: Dependence-testing: The RHS of (15.11) is equivalent to the minimum error probability of
the following Bayesian hypothesis testing problem:

H0 ∶X,Y ∼ PX,Y versus H1 ∶X,Y ∼ PXPY

prior prob.: π0 =
2

M + 1
, π1 =

M − 1

M + 1
.

Note that X,Y ∼ PX,Y and X,Y ∼ PXPY , where X is the sent codeword and X is the unsent
codeword. As we know from binary hypothesis testing, the best threshold for the LRT to minimize
the weighted probability of error is log π1 .π0

Note: Here we avoid minimizing over τ in Shannon’s bound (15.10) to get the minimum upper
bound in Theorem 15.1. Moreover, DT bound is stronger than the best Shannon’s bound (with
optimized τ).
Note: Similar to the random coding achievability bound of almost lossless compression (Theorem
7.4), in Theorem 15.1 and Theorem 15.2 we only need the random codewords to be pairwise
independent.

15.4 Feinstein’s Lemma

The previous achievability results are obtained using probabilistic methods (random coding). In
contrast, the following achievability due to Feinstein uses a greedy construction. Moreover,
Feinstein’s construction holds for maximal probability of error.

Theorem 15.3 (Feinstein’s lemma). ∀PX , ∀γ > 0, ∀ε ∈ (0,1 , M,ε max-code such that

M ≥ γ ε

) ∃( )

( − P[i(X;Y

Remark 15.6 (Comparison with Shannon’s bound).

)

(

W

< log γ (15.12)

e can

])

also interpret (15.12) as for fixed M ,
there exists an M,ε)max-code that achieves the maximal error probability bounded as follows:

ε ≤ P[i(
M

X;Y ) < log γ] +
γ

Take log γ logM τ , this gives the bound of exactly the same form in (15.10). However, the
two are pro

=

ved in seemingly
+

quite different ways: Shannon’s bound is by random coding, while
Feinstein’s bound is by greedily selecting the codewords. Nevertheless, Feinstein’s bound is stronger
in the sense that it concerns about the max error probability instead of the average.

Proof. The idea
∈

is
X

to construct the codebook of size M in a greedy way.
For every x , associate it with a preliminary decode region defined as follows:

Ex y i x; y log γ

Notice that the preliminary decoding regions

≜ { ∶ (

Ex

)

ma

≥

y be

}

overlapping, and we denote the final
decoding region partition regions by Dx .

We can assume that P i X;Y log γ ε,

{

for

}

otherwise the R.H.S. of (15.12) is negative and
there is nothing to prove.

{ }

[

W
(

e first
) <

claim
]

that
≤

there exists some c such that PY [Ec∣X c
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Show b
[

y
(

contradiction.
) ≥

Assume that c , P i c;Y log γ X c 1 ε, then pick c PX , we
have P i X;Y log γ 1 ε, which is

Then we construct the codebook in

∀

a
th

∈

c
e

X

ontradiction.
follo

[

wing

( ) ≥ ∣ = ] < − ∼

] < −

greedy way:

1. Pick c1 to be any codeword such that PY [Ec1 ∣X = c1 1 ε, and set D1 Ec1 ;

2. Pick c2 to be any codeword such that PY Ec2 D1 X

] ≥ − =

[ / ∣ = c2] ≥ 1 − ε, and set D2

. . .
= Ec2/D1;

3. Pick cM
−
to be any codeword such that PY [EcM

E M 1
cM j=1 Dj . We stop if no more codeword can

stopping condition:

/ ∪M=
e

−1
j 1 Dj

b found,

∣X = cM
i.e., M

] ≥ −

/ ∪

1 ε, and set DM

is determined by the

=

x0 , PY E M
x0 j 1 Dj X x0 1 ε

Averaging over x0 ∼ PX , the

∀

stopping

∈ X

condition

[ / ∪

giv

=

es

∣

that

= ] < −

P({i(X;Y

by union bound P A B P A P B

) ≥ log γ}/{Y M
j 1Dj 1 ε

( / ) ≥ ( ) − ( ), we have

∈ ∪ = }) < −

P(i(X;Y ) ≥ log γ) −∑
M

=
PY Dj

j 1

M

) < 1 − ε

⇒P i

(

( (X;Y ) ≥ log γ) − 1
γ

< − ε

where the last step makes use of the following key observation:

PY (Dj) ≤ PY (Ecj) = PY (i(cj ;Y ) ≥ log γ) <
1

γ
, (by Corollary 15.1).
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