
§ 16. Linear codes. Channel capacity

Recall that last time we showed the following achievability bounds:

Shannon’s: Pe ≤ P [i(X;Y ) ≤

⇑

logM + τ] + exp{−τ}

DT: Pe ≤ [
1

E exp{−(i( ;Y ) −
M

X log
−

2
)
+

Feinstein’s: Pe,max P i X;Y logM τ exp

}]

τ

This time we shall use a shortcut to prove
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Pe = Pe,max.

16.1 Linear coding

Definition 16.1 (Linear code). Let X = Y = Fn k

∶ → ∀ ∈
q , M = q . Denote the codebook by C ≜ {cu ∶

= ∈

u Fkq .

A code f Fkq Fnq is a linear code if u Fkq , c n
u uG (row-vector convention), where G Fkq

.

∈

is
a generator matrix

×
}

Proposition 16.1.

c ∈ C

⇔ c row span of G

c

∈

KerH, for some H F(n−k)×n
q s.t. HGT 0.

Note: For linear codes, the

⇔

co

∈

debook is a k-dimensional

∈

linear subspace

=

of Fnq (ImG or KerH). The
matrix H is called a parity check matrix.
Example

= [−

: (Hamming
]

code) The [7,4,3]2 Hamming code over F2 is a linear code with G = [I;P
and H P T ; I is a parity check matrix.

]

G

⎢
⎡ 1 ⎤
⎢
⎢

1 0 0 0 1 0
0 1 0 0 1 0 1 ⎥

⎥

H
⎢
⎡
⎢

= ⎢
⎥
⎥ ⎢

⎢

1 1 0 1 1 0 0

⎢
⎢ ⎥

=

⎢
⎥
⎥ ⎣

⎢
1 0 1 1 0 1 0

0 0 1 0 0 1 1
0 1 1 1 0 0 1

0 0 0 1 1 1 1

⎥
⎥
⎤

⎥
⎥

Parity chec

⎥
⎣

k: all four bits in the

⎦

same circle sum up to zero.

⎦

x5

x6 x7

x4
x1x2

x3

Note: Linear codes are almost always examined with channels of additive noise.

Definition 16.2 (Additive noise). PY ∣X is additive-noise over Fnq if

PY ∣X(y∣x) = PZn(y − x)⇔ Y =X +Zn where Zn ⊥⊥X
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Now: Given a linear code and an additive-noise PY ∣

[ ]

X , what can we say about the decoder?

Theorem
∶

16.1.
→

Any k,n Fq linear code over an additive-noise PY X has a maximum likelihood
decoder g Fnq Fnq such that:

∣

1. g y y g H T
synd yT , i.e., the decoder is a function of the “syndrome” Hy only

2. De

(

c

)

oding

= −

regions

(

are

)

translates: Du = cu +D0,∀u

3. Pe,max Pe,

where gsynd

=

∶ Fn−kq → Fnq , defined by gsynd(s
which decodes the most likely realization of

) = argmaxz∶HxT =s PZ(z), is called the “syndrome decoder”,
the noise.

Proof. 1. The maximum likelihood decoder for linear code is

g(y) = argmax
∈C

PY ∣X(y∣c) = argmax
∶ =

PZ
c c HcT 0

(y − c) = y − argmax
z∶

PZ z
zT

( ),

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
H

≜g
¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
=H
¸
yT

synd(H
¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
yT
¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
)

¹¹¶

2. For any u, the decoding region

Du = {y

where we

∶ g(y) = cu} = {y ∶ y − gsynd(Hy
T ) = cu} = {y ∶ y − cu = g

T
synd

used

(H(y − cu) )} = cu +D0,

HcTu 0 and c0 0.

3. For any u,

= =

P[Ŵ ≠ u∣W = u] = P[g(cu+Z) ≠ cu] = P[c T
u+Z−gsynd(Hcu +HZ

T ) ≠ c T
u] = P[gsynd(HZ ) ≠ Z].

Note: The advantages of linear codes include at least

1. Low-complexity encoding

2. Slightly lower complexity ML decoding (syndrome decoding)

3. Under ML decoding, maximum probability of error = average probability of error. This is a
consequence of the symmetry of the codes. Note that this holds as long as the decoder is a
function of the syndrome only. As shown in Theorem 16.1, syndrome is a sufficient statistic
for decoding a linear code.

Theorem

→

16.2 (DT bounds for linear codes). Let PY ∣X be additive noise over Fnq . ∀k, a linear code f

Fkq Fnq with the error probability:

∃ ∶

Pe,max = Pe ≤ E[q
−(n−k−log 1

q PZn (Zn)
)
+

] (16.1)
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Proof.
∼

Recall that in proving the Shannon’s achievability bounds, we select the code words c1, . . . , cM
i.i.d PX and showed that

E[Pe(
M 1

c1, . . . , cM)] ≤ P [i(X;Y ) ≤ γ] +
−

2
P (i(X;Y γ

As noted after the proof of the DT bound, we only need the random co

)

dew

≥ )

ords to be pairwise
independent. Here we will adopt a similar approach. Note that M qk.

Let’s first do a quick check of the capacity achieving input distribution
=

for PY ∣X with additive
noise over Fnq :

max I X;Y maxH Y H Y X maxH Y H Zn n log q H Zn PX uniform on Fnq
PX

( ) =
PX

( ) − ( ∣ ) =
PX

We shall use the uniform distribution PX in the

( )

“ran

−

dom

( )

co

=

ding”

− ( )⇒ ∗

trick.
Moreover, the optimal (MAP) decoder with uniform input is

=

the
+

ML deco
∀

der, whose decoding
regions are translational invariant by Theorem 16.1, namely Du cu D0, u, and therefore:

Pe,max = Pe = P [Ŵ ≠ u∣W = u],∀u.

Step 1: Random linear coding with dithering:

∀u ∈ Fkq , cu = uG + h

G and h are drawn from the new ensemble, where the k×n entries of G and the 1 n entries
of h are i.i.d. uniform over Fq. We add the dithering to eliminate the special role that the
all-zero codeword plays (since it is contained in any linear codebook).

×

Step 2: Claim that the codewords are pairwise independent and uniform: ∀u ≠ u′, (cu, cu′) ∼ (X,X),
where PX,X(x,x) = 1/q2n. To see this:

cu ∼

=

uniform

+ =

on Fnq
cu′ u′G h uG h u u G cu u u G

We claim that cu ⊥⊥ G because conditioned

′

on the generator

′

matrix G G0, cu
uniform on n due to the dithering h.

+ + ( − ) = + ( − )

Fq
We also claim that c c n

u ⊥⊥ cu′ because conditioned on u, (u u G uniform on

=

Fq .

∼

Thus random linear coding with dithering indeed gives co

′

dew
−

ords
) ∼

cu, cu′ pairwise indepen-
dent and are uniformly distributed.

Step 3: Repeat the same argument in proving DT bound for the symmetric and pairwise independent
codewords, we have

E[
M 1

Pe(c1, . . . , cM)] ≤ P [i(X;Y ) ≤ γ] +
−

2
P (i(X,Y ) ≥ γ)

⇒Pe ≤ E[exp{−(i(X;Y ) − log
M − 1

2
)
+
}] = E[q−(i(X;Y )−logq

qk−1 i
2

+

E q− (X;Y )−k
+

where we used M = qk and picked the base of log to be q.

)
] ≤ [

( )
]

Step 4: compute i(X;Y ):

i(a; b) =
PZn

logq
(b − a)

q−n
= n − logq

1

PZn(b − a

therefore

)

Pe ≤ E[q
−(n−k−log 1

q PZn (Zn)
)
+

] (16.2)
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Step 5: Kill h. We claim that there exists a linear code without dithering such that (16.2) is satisfied.
Indeed shifting a codebook has no impact on its performance. We modify the coding scheme
with G,h which achieves the bound in the following way: modify the decoder input Y Y h,
then when cu is sent, the additive noise PY

′

which is equivalent to that the linear code
′∣X becomes then Y ′ uG h+Zn −h = uG

=

+Z
−
n,

generated by G is used.
= +

Notes:

• The ensemble cu = uG +

( ) = ( ) + (

h
)

has
= (

the
+

pairwise
)

independence property. The joint entropy
H c1, . . . , cM H G H h nk n log q is significantly smaller than Shannon’s “fully
random” ensemble we used in the previous lecture. Recall that in that ensemble each cj was
selected independently uniform over Fnq , implying H c k

1, . . . , cM q n log q. Question:

minH(c1, . . . , cM

(

??

) =

where minimum is over all distributions with P c 2
i

) =

a, cj b q n when i j (pairwise
independent, uniform

(

codewords). Note that H c1, . . . , cM H c1

−

, c2 2n log q. Similarly,
we may ask for ci, cj

[ = = ] =

( ) ≥

) to be
=

uniform over all
(

pairs of distinct
) ≈

elements. In this case

≠

Wozencraft
ensemble for the case of n 2k achieves H c1, . . . , cqk 2n log q.

( ) =

• There are many different ensembles of random codebooks:

i.i.d.
– Shannon ensemble: C = {

C

c

=

1,

{

. . . , cM

–

∼ PX – fully random

Elias ensemble [Eli55]: uG

}

∶ u ∈ Fkq}, with generator matrix G uniformly drawn at
random.

– Gallager ensemble: C = {c ∶ HcT = 0}, with parity-check matrix H uniformly drawn at
random.

• With some non-zero probability G may fail to be full rank [Exercise: Find P rank G k as
a function of n, k, q!]. In such a case, there are two identical codewords and hence

[

P
(

e,max 1 2.
There are two alternative ensembles of codes which do not contain such degenerate co

)

de

<

b

]

≥

ooks:
/

1. G uniform on

searc

∼ all full rank matrices

2. h codeword cu ∈ KerH where H ∼ uniform on all n × (n
(random

− k) full row rank matrices.
parity check construction)

¯Analysis of random coding over such ensemble is similar, except that this time X,X have
distribution

=
1

P ¯X,X

( )

1 X X
q2n qn

′

uniform on all pairs of distinct codewords and

−

not pairwise

{ ≠ }

independent.

16.2 Channels and channel capacity

Basic question of data transmission: How many bits can one transmit reliably if one is allowed to
use the channel n times?

• Rate = # of bits per channel use

• Capacity = highest achievable rate
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Next we formalize these concepts.

Definition 16.3 (Channel). A channel is specified by:

• input alphabet

• output alphabet

A

• a sequence of random

B

transformation kernels P ∣ ∶ An → BnY n Xn , n = 1,2, . . . .

• The parameter n is called the blocklength.

Note: we do not insist on PY n∣Xn to have any relation for different n, but it is common that
the conditional distribution of the first k letters of the n-th transformation is in fact a function of
only the first k letters of the input and this function equals PY k ∣Xk – the k-th transformation. Such
channels, in particular, are non-anticipatory: channel outputs are causal functions of channel inputs.

Channel characteristics:

• A channel is discrete if A and B are finite.

• A channel is additive-noise if A = B are abelian group, and

P n n n n n
yn∣xn = PZn(y − x ) Y X Z .

•
A

A c

=

→

hannel is memoryless if there exists a sequence

⇔

PX Y

+

k k
, k 1, . . . of transformations acting

such that P n
Y n Xn k 1 PYk Xk (in particular, the channels are compatible at different

blocklengths).
∣

{ ∣ = }

B =∏ = ∣

• A channel is stationary memoryless if P n
Y n Xn k 1 PY1 X1

.

• DMC (discrete memoryless stationary channel)

∣ =∏ = ∣

A DMC can be specified in two ways:

– an ∣A∣ × ∣B∣-dimensional matrix PY ∣X where elements specify the transition probabilities

– a bipartite graph with edge weight specifying the transition probabilities.

Example:

Definition 16.4 (Fundamental Limits). For any channel,

• An (n,M, ε)-code is an (M,ε)-code for the n-th random transformation PY n∣Xn .
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• An n,M, ε max-code is analogously defined for maximum probability of error.

The non-asymptotic

( )

fundamental limits are

M∗(n, ε) = max{M

Mmax
∗ n, ε max M

∶ ∃ (n,M, )

( ) =

-code}

{ ∶ ∃ (

ε (16.3)

n,M, ε)max-code} (16.4)

Definition 16.5 (Channel capacity). The ε-Capacity Cε and Shannon Capacity C are

Cε ≜
1

lim inf
n→∞

logM∗(n, ε
n

C

)

= lim
ε→0+

Cε

Notes:

• This operational definition of the capacity represents the maximum achievable rate at which
one can comm

<

unicate through a channel with probability of error less than ε. In other words,
for any R C, there exists an n, exp nR , εn -code, such that εn 0.

• Typically, the ε-capacity behav

(

es like

(

the

)

plot

)

below on the left-hand

→

side, where C0 is called
the zero-error capacity, which represents the maximal achievable rate with no error. Often
times C0 = 0, meaning without tolerating any error zero information can be transmitted. If Cε
is constant for all ε (see plot on the right-hand side), then we say that the strong converse
holds (more on this later).

ǫǫ

CǫCǫ

b

strong converse
holds

Zero error
CCapacity 0

0 1 0 1

Proposition 16.2 (Equivalent definitions of Cε and C).

C = sup{R ∶ ∀δ > 0,∃n (δ),∀n ≥ n (δ),∃(n,2n R δ
ε 0 0 , ε code

C sup R ε 0, δ 0, n0 δ, ε , n n0 δ,

(

ε ,

− )

n,

)

2n(R−
}

δ), ε code

Proof. This trivially

=

follo

{ ∶

ws

∀

from

> ∀

applying

> ∃

the

(

definitions

) ∀ ≥ (

of M

) ∃(

n,

) }

∗( ε) (DIY).

(
Question:

) (
Wh

)
y do we define capacity Cε and C with respect to average probability of error, say,

max
Cε and C max ? Why not maximal probability of error? It turns out that these two definitions
are equivalent, as the next theorem shows.

Theorem 16.3. ∀τ ∈ (0,1),

τM∗(n, ε(1 − τ)) ≤Mmax
∗ (n, ε) ≤M∗(n, ε)
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Proof. The second inequality is obvious, since any code that achieves a maximum error probability
ε also achieves an average error probability of ε.

For the first inequality, take an (n,M, ε(1− τ))-code, and define the error probability for the jth

codeword as

λj ≜ P

Then

[Ŵ =/ j∣W = j]

M(1 − τ)ε ≥∑λj =∑λj1{λj≤ε} +∑λj1{λj>ε} ≥ ε∣{j ∶ λj > ε .

Hence ∣{j ∶ λj > ε}∣ ≤ (1 − τ)M . [Note that this is exactly Mark
(

ov inequalit
)

y!] Now by removing
those

∗(
co
(

dew
−

ords
))

1 whose λj exceeds ε, we can extract an n, τM, ε -co

}∣

max de. Finally, take M
M n, ε 1 τ to finish the proof.

=

max
Corollary 16.1 (Capacity under maximal probability of error). Cε

( )
= Cε for all ε >

= ( )
0 such that

C Cε−. In particular, C max
ε C.2

Proof. Using the definition of M

=

∗ and the previous theorem, for any fixed τ 0

≥ (max) ≥
1

Cε Cε lim inf

>

n→∞ n
log τM∗(n, ε(1 − τ)) ≥ Cε(1−τ)

Sending τ → 0 yields Cε ≥ C
(max)
ε ≥ Cε−.

16.3 Bounds on Cε; Capacity of Stationary Memoryless Channels

Now that we have the basic definitions for Cε, we define another type of capacity, and show that
for a stationary memoryless channels, the two notions (“operational” and “information” capacity)
coincide.

Definition 16.6. The information capacity of a channel is

Ci =
1

lim inf
n→∞

sup I Xn;Y n

n P nX

Remark: This quantity is not the same as the Shannon

(

capacit

)

y, and has no direct operational
interpretation as a quantity related to coding. Rather, it is best to think of this only as taking the
n-th random transformation in the channel, maximizing over input distributions, then normalizing
and looking at the limit of this sequence.

Next we give coding theorems to relate information capacity (information measures) to
Shannon capacity (operational quantity).

Theorem 16.4 (Upper Bound for Cε). For any channel, ∀ε ∈ [0,1), Cε ≤
Ci and C Ci.1 ε

Proof. Recall the general weak converse bound, Theorem 14.4:

− ≤

∗( ) ≤
sup I(Xn;Y n

P
logM n, ε

nX
) + h(ε)

1 − ε

1This operation is usually referred to as expurgation which yields a smaller code by killing part of the codewords
to reach a desired property.

2Notation: f(x−) ≜ limy↗x f(y).
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Normalizing this by n the taking the lim inf gives

Cε =
1

lim inf
n→∞ n

logM∗(n, ε) ≤ lim inf
n→∞

1

n

supPXn I(X
n;Y n) + h(ε)

1 − ε
=

Ci
1 − ε

Next we give an achievability bound:

Theorem
∈ ( ]

16.5 (Lower Bound for Cε). For a stationary memoryless channel, Cε Ci, for any
ε 0,1 .

The following result follows from pairing the upper and lower bounds on C

≥

ε.

Theorem 16.6 (Shannon ’1948). For a stationary memoryless channel,

C Ci sup I X;Y . (16.5)
PX

Remark 16.1. The above result, known

=

as

=

Shannon’s

(

Noisy

)

Channel Theorem, is perhaps
the most significant result in information theory. For communications engineers, the major surprise
was that C 0, i.e. communication over a channel is possible with strictly positive rate for any
arbitrarily small

>

probability of error. This result influenced the evolution of communication systems
to block architectures that used bits as a universal currency for data, along with encoding and
decoding procedures.

Before giving the proof of Theorem 16.5, we show the second equality in (16.5). Notice that
Ci for stationary memoryless channels is easy

→∞

to compute: Rather than solving an optimization
problem for each n

=

and taking the limit of n , computing Ci boils down to maximizing mutual
information for n 1. This type of result is known as “single-letterization” in information theory.

Proposition 16.3 (Memoryless input is optimal for memoryless channels).
For memoryless channels,

sup I Y
P n

(Xn; n

X

For stationary memoryless channels,

) =
i
∑
n

=
sup I
PXi

(Xi;Yi).
1

Ci sup I X;Y .
PX

Proof. Recall that for product kernels P

=

P

(

,

)

we have I Xn n
Y n Xn Yi Xi ;Y n

k 1 I Xk;Yk , with
equality when Xi’s are independent. Then

∣ =∏ ∣ ( ) ≤ ∑ = ( )

Ci =
1

lim inf
n→∞ n

sup
PXn

I(Xn;Y n) = lim inf
n→∞

sup
PX

I(X;Y ) = sup
PX

I(X;Y ).

Proof of Theorem 16.5. ∀PX , and let PXn = P
>

n
X (iid product).

(

Recall Shannon’s (or Feinstein’s)
achievability bound: For any n,M and any γ 0, there exists n,M, εn)-code, s.t.

εn ≤ P[i(Xn;Y n) ≤ logM

Here the information density is defined as

+ γ] + exp(−γ)

i(
n

Xn, Y n) =
dPY n∣X

log
dPY n

(Y n∣Xn) =
n

∑
k=1

log
dPY ∣X
dPY

(Yk∣Xk) =
n

∑
k=1

i(Xk;Yk),
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which is a sum of iid r.v.’s with mean I
γ δn in Shannon’s bound, we have

n

(X;Y ). Set logM = n(I(X;Y ) − 2δ) >

=

for δ 0, and taking

εn ≤ P[∑
n

=
i Xk;Yk nI X;Y δn exp δn 0

k 1

→∞

The second terms
∀

goes
∀

to
>

zero since

(

δ

)

0,

≤

and

(

the first

) −

terms

] +

go

(

es

−

to

)

zero

ÐÐÐ→

by WLLN.
Therefore, PX , δ 0, there exists a sequence of n,Mn, εn -codes with εn 0 (where

logMn δ

>

= n I
( ) →

( (X;Y ) − 2 )). Hence, for all n such that εn ε

logM∗

≤

(n, ε) ≥ n(I(X;Y ) − 2δ

And so

)

1
Cε = lim inf

n→∞ n
logM∗(n, ε) ≥ I(X;Y ) − 2δ ∀PX ,∀δ

Since this holds for all PX and all δ, we conclude Cε ≥ supPX I(X;Y ) = Ci.

Remark 16.2. Shannon’s noisy channel theorem (Theorem 16.6) shows that by employing codes
of large blocklength, we can approach the channel capacity arbitrarily close. Given the asymptotic
nature of this result (or any other asymptotic result), two natural questions are in order dealing
with the different aspects of the price to reach capacity:

1. The complexity of achieving capacity: Is it possible to find low-complexity encoders and
decoders with polynomial number of operations in the blocklength n which achieve the
capacity? This question is resolved by Forney in 1966 who showed that this is possible in
linear time with exponentially small error probability. His main idea is concatenated codes.
We will study the complexity question in detail later.

Note that if we are content with polynomially small probability of error, e.g., Pe O n 100 ,
then we can construct polynomially decodable codes as follows. First, it can be sho
with rate strictly below capacity, the error probability of optimal codes decays exp

=

wn
( −

that
onentially

)

w.r.t. the blocklenth. Now divide the block of length n into shorter block of length C logn
and apply the optimal code for blocklength C logn with error probabilit

−
y n 101. The by the

union bound, the whole block is has error with probability at most n 100. The

−

encoding and
exhaustive-search decoding are obviously polynomial time.

2. The speed of achieving capacity: Suppose we want to achieve 90% of the capacity, we want
to know how long do we need wait? The blocklength is a good proxy for delay. In other
words, we want to know how fast the gap to capacity vanish as blocklength grows. Shannon’s
theorem shows that the gap C − 1

n logM∗(n, ε) = o(1). Next theorem shows that under proper
conditions, the o(1) term is in fact O( 1√ .

n

The main tool in the proof of Theorem 16.5

)

is the WLLN. The lower bound Cε Ci in
Theorem 16.5 shows that logM n, ε nC o n the liminf
must result in something ≥

(since normalizing by n and taking
C). If

∗(
instead

) ≥

we
+

do
(

a
)

more refined analysis using the CLT, we

≥

find

Theorem 16.7.
( )

For any stationary
= [

memoryle
( ∗

ss channel with C maxPX I X;Y (i.e. PX
argmaxPX I X;Y ) such that V Var i X ;Y

= ( ) ∃ ∗
∗

=

)] <∞, then

logM∗(n, ε) ≥ nC −
√
nV Q−1(ε) + o(

√
n),

where Q(⋅) is the complementary Gaussian CDF and Q−1(⋅) is its functional inverse.
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Proof. Writing the little-o notation in terms of lim inf, our goal is

logM
lim inf
n

∗

→∞
(n, ε) − nC
√ Q 1

nV

−1 ε Φ− ε ,

where Φ t

≥ − ( ) = ( )

( ) is the standard normal CDF.
Recall Feinstein’s bound

∃(

√

n,M, ε ;

T

)max ∶ M ≥ β (ε − P[i(Xn Y n) ≤ logβ

ake logβ

])

= nC + nV t, then applying the CLT gives

logM ≥ nC +
√
nV t + log (ε − P [∑ i(Xk;Yk) ≤ nC +

√
nV t])

Ô⇒ logM ≥ nC +
√

−

nV t + log (ε −Φ(t)) ∀Φ(t) < ε

Ô⇒
logM nC

√
nV

≥ t +
log(ε −Φ(t))

√

(

nV

Where Φ t) is the standard normal CDF. Taking the liminf of both sides

logM
lim inf
n

∗

→∞
(n, ε) − nC
√ t t s.t. Φ t ε
nV

Taking t↗ Φ−1(ε), and writing the liminf in little o

≥

form

∀

completes

( )

the

<

proof

logM∗(n, ε) ≥ nC −
√
nV Q−1(ε) + o(

√
n)

16.4 Examples of DMC

Binary symmetric channels

0 0

1 1

δ̄

δ

δ̄

δ

Y =X +Z, Z ∼ Bern(δ) ⊥⊥X

0 1
2

1
δ

1 bit

C

Capacity of BSC:
C sup I X;Y 1 h δ

PX

Pro −H(

∼

of. I(
(

X
/

;X +

)

Z) = H(X + Z) X

=

Z X

(

H

) =

X

−

Z

( )

H Z 1 h δ , with equality iff
X Bern 1 2 .

+ ∣ ) = ( + ) − ( ) ≤ − ( )

Note
=

: More
∣

generally = (

) ∣ − ( )

, for all additive-noise channel over a finite abelian group G, C supP I X;X
X

Z log G H Z , achieved by uniform X.
+
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Binary erasure channels

0 0

e

1 1

δ̄

δ

δ̄

δ

BEC is a multiplicative channel: If we think about the
input X ∈ {±1},

=

and output Y ∈ 1,0 . Then equivalently
we can write Y XZ with Z ∼ Bern

{± }

(δ) ⊥⊥X.

0 1
δ

1 bit

C

Capacity of BEC:
C = sup I X;Y 1 δ bits

PX

( = ∣ = ) =
P (X=0)δ

Proof. Note that P X 0 Y e

( ) = −

( ) − ( ∣ = ) ≤ ( − ) ( ) ≤ −

P X 0 . Therefore I X;Y H X H X Yδ
H X H X Y e 1 δ H X 1 δ, with

= (

equali
=

t
)

y iff X
( ) = ( ) − ( ∣ ) =

∼ Bern(1/2).

16.5* Information Stability

We saw that C = Ci for stationary memoryless channels, but what other channels does this hold
for? And what about non-stationary channels? To answer this question, we introduce the notion of
information stability.

Definition
{

16.7.
=

A c
}

hannel is called information stable if there exists a sequence of input distribu-
tion PXn , n 1,2, . . . such that

1
i Xn;Y n Ci in probability

n

For example, we can pick PXn

( )Ð→

= (PX
memoryless channels are information stable.

∗

The purpose for defining information

)n for stationary memoryless channels. Therefore stationary

stability is the following theorem.

Theorem 16.8. For an information stable channel, C Ci.

Proof. Like the stationary, memoryless case, the upper bound

=

comes from the general converse Theo-
rem 14.4, and the lower bound uses a similar strategy as Theorem 16.5, except utilizing the definition
of information stability in place of WLLN.

The next theorem gives conditions to check for information stability in memoryless channels
which are not necessarily stationary.
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Theorem 16.9. A memoryless channel is information stable if either of there exists {Xk
∗, k = 1, . . .

such that both of the following hold:

1

}

n

n

∑
k=1

I(X∗
k ;Y ∗

k )→ Ci (16.6)

∞
∑
n=1

1
V ar i X

n2 n
∗;Yn

∗ . (16.7)

In particular, this is satisfied if

[ ( )] <∞

Proof. To show the first part, it is sufficien

∣A∣

t

<∞ or ∣B∣ <∞ (16.8)

to prove

P [
1

n
∣
n

∑
k=1

i(X∗
k ;Y ∗

k ) − I(X∗
k , Y

∗
k )∣ > δ]→ 0

So that 1
n i(X

n;Y n)→ Ci in probability. We bound this by Chebyshev’s inequality

P [
1

n
∣
n

∑
k=1

i(X∗
k ;Y ∗

k ) − I(X∗
k , Y

∗
k )∣ > δ] ≤

1
n2 ∑

n
k=1 Var[i(X∗

k ;Y ∗
k )]

0
δ2

→ ,

where
=

conv
=

ergence
b n2
n , xn Var[

to 0 follows from Kronecker lemma (Lemma 16.1 to follow) applied with
i 2

n

part
(Xn

∗;Y n .
The second follows

∗)]/
from the first. Indeed, notice that

Ci =
1

lim inf
n→∞

n

sup I Xk;Yk .
n k 1 PXk

Now select PX

∑
=

( )

k
∗ such that

I(Xk
∗;Yk

∗) ≥ sup I

supPX

(Xk;Yk) − 2−k .

(Note that each I
k

(Xk;Yk log min

n

) ≤

I Xk ;Yk

{∣A

P

∣

Xk

, ∣B∣} <∞.) Then, we have

n

sup I Xk;Yk 1 ,
k 1

∗ ∗

k 1 PXk

and hence normalizing by n we

∑
=

get

(

(16.6).

)

W

≥

e

∑
=

next sho

(

w that

) −

for any joint distribution PX,Y we
have

Var[i(X;Y )] ≤ 2 log2

in

(min

symmetric

(∣A∣, ∣B∣)) . (16.9)

The argument is X and Y , so assume for concreteness that . Then

E[i2

∣B∣ <∞

(X;Y )] (16.10)

≜ ∫A
dPX(x)∑ PY ∣

2

∈B
X(y∣x)[ log PY ∣X(y∣x) + log2 PY (y) − 2 logPY

y
∣X(y∣x) ⋅ logPY (y)](16.11)

≤ ∫A
dPX(x)∑ ∣

∈B
PY X(y∣x) [log2 PY ∣X y x log2 PY y (16.12)

⎢

y

⎡

= ∫A
dP (x) ⎢

⎢
⎢
∑ P ∣ y x log2

( ∣ ) + ( )]

X

⎣ ∈B
Y X PY ∣X y x

⎤

PY y
⎥

(16.13)
y

⎥
⎡
⎢

P y log2
Y

y

⎤

≤ ∫A
dPX(x)g(∣B∣) + g

( ∣ ) ( ∣ )⎥⎥ + ⎢
⎢∑ ( ) ( )⎥

⎦
⎥

⎣
⎢ ∈B

⎥
⎥
⎦

(∣B∣) (16.14)

= 2g(∣B∣) , (16.15)
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where (16.12) is because 2 logPY X y x logPY y is always non-negative, and (16.14) follows
because each term in square-brac
problem:

∣
kets
( ∣

can
) ⋅

be upp
( )

er-bounded using the following optimization

n

g n sup a 2
j log aj . (16.16)

aj 0 n
j 1 aj 1 j 1

Since the x
[

log2

=

]

x has unbounded deriv

( ) ≜

ativ

≥

e

∶∑

at the

=

or

∑
=

igin, the solution
>

of (16.16) is always in the
interior of 0,1 n. Then it is straightforward to show that for n e the solution is actually aj =

1

(
n

F =

.

or n 2 it can be found directly that g 2) = 0.5629 log2 2 < log2 2. In any case,

2g

Finally, because of the symmetry, a similar

(∣B

argumen

∣) ≤ 2 log2 ∣B∣ .

t can be made with ∣B∣ replaced by ∣A∣.

Lemma 16.1 (Kronecker Lemma). Let a sequence 0 < bn ↗∞ and a non-negative sequence {xn}
such that ∑∞

n=1 xn <∞, then

1
j

b j
∑
n

b
n =

xj
1

strictly

→ 0

Proof. Since bn’s are increasing, we can split

Ð

up the summation and bound them from above

∑
n m n

bkxk bm
k=

xk bkxk
1

No

≤
k

∑
=1

+
k=
∑
m+1

w throw in the rest of the xk’s in the summation

Ô⇒
1

bn

n

∑
k=1

bkxk ≤
bm
bn

∞
∑
k=1

xk +
n

∑
k=m+1

bk
bn
xk ≤

bm
bn

∞
∑
k=1

xk +
∞
∑

k=m+1

xk

Ô⇒ lim
n→∞

1 n

bkxk xk 0
bn k

∑
=1

≤
k

∑
∞

=m+1

Since this holds for any m, we can make the last term

→

arbitrarily small.

Important example: For jointly Gaussian (X,Y ) we always have bounded variance:

Var[i(X;Y )] = ρ2(X,Y ) log2 e ≤ log2 co
e , ρ(X,Y ) =

v[X,Y ]
√ . (16.17)

Var X Var Y

˜ ˜Indeed, first notice that we can always represent Y X Z with X

[

aX

]

Z

[

. On

]

the other hand,
we have

( ) =
log e

i x̃; y

= + = ⊥⊥

2
[
x̃2 + 2x̃z

σ2
Y

−
σ2

z2 , z y x̃ .
σ2 σ2

˜From here by using Var X

] ≜ −

[⋅] = Var[E[⋅∣ ]] +

Y Z

Var[⋅∣X̃] we need to compute two terms separately:

E[i(
e˜ ;Y )∣X̃] =

log
X

2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

X̃2 −
σ2
X̃

σ2
Z ,

σ2
Y

⎤
⎥
⎥
⎥

and hence

⎥
⎥

[ [ ( )∣ ]] =
2 log2 e

⎥

˜ ˜

⎦

Var E i X;Y X
4σ4

Y

σ4
X̃
.
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On the other hand,

Var[i(X̃;Y )∣X̃] =
2 log2 e

4σ2 4

σ4 ˜σ
2

X Z 2σ ˜ .
4 X

Y

Putting it all together we get (16.17). Inequality (16.17

[

) justifies

+

information

]

stability of all sorts of
Gaussian channels (memoryless and with memory), as we will see shortly.
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