
§ 19. Channel coding: energy-per-bit, continuous-time channels

19.1 Energy per bit

Consider the additive Gaussian noise channel:

Yi =Xi +Zi, Zi ∼ N (
N0

0, . (19.1)
2

In the last lecture, we analyzed the maximum number of information

)

bits (M n, ε,P ) that can be
pumped through for given n time use of the channel under the energy constrain

∗

t P . Today we shall
study the counterpart of it: without any time constraint, in order to send k information

( )

bits, what
is the minimum energy needed? (E k, ε )

( )

ˆDefinition 19.1 ( (E,2k, ε) code).

∗

F

(

or a

)

channel W →X∞ → Y ∞ →W , where Y
E,2k, ε code is a pair of encoder-decoder:

∞ =X∞ +Z∞, a

f ∶ [2k]→ R
such that 1 . m, f

∞, g

m 2
2

∶ R
E

∞

. ∞
,

→ [

∀

2k]

) ∥ ( )∥ ≤

,

2 P g f W Z W ε.

Definition 19.2 (Fundamental limit).

) [ ( ( ) + ) ≠ ] ≤

E∗ k, ε min E E,2k, ε code

Note: Operational meaning of lim

(

ε E

) = { ∶ ∃ ) }

→0

(

∗(k, ε): it suggests the smallest battery one needs in order
to send k bits without

(

any time

Theorem 19.1 ( Eb/N0)min

lim lim

= −

constraints, below that level reliable communication is impossible.

1.6dB).

E

→
sup

ε→0 k

∗

∞

(k, ε)

k
=

N0

log2 e
,

1
1

log2 e
= − .6dB (19.2)

Proof.
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1. (“≥” converse part)

−h(ε) + εk ≤ d((1 − ε)∥
1

(F
M

) ano)

≤

≤

ˆI W ;W (data processing for divergence)

I

( )

(X∞;Y ∞) (data processing for M.I.)

≤
i
∑
∞

n ∞

=
I(Xi;Yi) ( lim

→∞
I(X ;U I

n
) = (X ;U

1

))

≤
i
∑
∞ 1

=1 2
log(1 +

EX2
i

N0/2
) (Gaussian)

≤
log e

2

∞
∑
i=1

EX2
i (linearization)

N0/2

≤
E

N0
log e

⇒
E∗(k, ε)

k
≥
N0

log e
(ε −

h(ε)
.

k

2. (“

)

≤” achievability part)
Notice that a (n,2k, ε, P ) code for AWGN channel is also a nP,2k, ε code for the energy
problem without time constraint. Therefore,

( )

log2Mmax
∗

P , take kn logMmax n, ε,P , we

(n, ε,P ) ≥ k⇒ E∗(k, ε) ≤ nP.

∀ = ⌊ ∗ ( )⌋
E

have
∗(kn,ε)
kn

≤ nP
kn
, ∀n, and take the limit:

lim sup
n→∞

E∗(kn, ε) nP
lim

kn
≤ sup

n→∞ logM∗
max(n, ε,P )

=
P

lim infn→∞
1
n logM∗

max(n, ε,P )

=
P

1
2 log(1 + P

N0/2

Choose P for the lowest upper bound:

)

E
lim sup
n

∗

→∞

(kn, ε)

kn
≤ inf
P≥0

P
1
2 log(1 + P

N0/2)

= lim
P→0

P
1
2 log(1 + P

N0/2)

=
N0

log2 e

Note: [Remark] In order to send information reliably at Eb N0 1.6dB, infinitely many time
slots are needed, and the information rate (spectral efficiency)
spectral efficiency, one necessarily has to step back from 1.6

/

dB

= −

−

is thus 0. In order to have non-zero
.
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Note: [PPM code] The following code, pulse-position modulation (PPM), is very efficient in terms
of Eb/N0.

PPM encoder: ∀m,f(m) = (0,0, . . . ,
√
E

±
m-th location

, . . . ) (19.3)

It is not hard to derive an upper bound on the probability of error that this code achieves [PPV11,
Theorem 2]:

ε ≤ E
⎡
⎢
⎢
⎢
⎢
⎣

min

⎧⎪⎪
⎨
⎪⎪⎩

MQ
⎛

⎝

√
2E

Z 1 ,
0

⎞
, 1

N

⎫⎪⎪
⎤
⎥
, Z 0 .

(

In
−
fact,√ the code can be further slightly optimized

+
⎠

by

⎬
⎪

sub

∼ ( )

⎦
⎥
⎥
⎥

tracting

N

⎭

the common center of gra ity
2 k

⎪

v
E, . . . , 2−k

√
E . . . and rescaling each codeword to satisfy the power constraint. The resulting

constellation (simplex co
small

)

de) is conjectured to be non-asymptotic optimum in terms of Eb
ε (“simplex conjecture”).

/N0 for

19.2 What is N0?

In the above discussion, we have assumed Zi 0,N0 2 , but how do we determine N0?
In reality the signals are continuous time (CT) process, the continuous time AWGN channel for

the RF signals is modeled as:

∼ N ( / )

Y (t X t N t (19.4)

where noise N(t) (added at the receiver antenna)

) = (

is

)

a

+

real

(

stationar

)

y ergodic process and is assumed
to be “white Gaussian noise” with single-sided PSD N0. Figure 19.1 at the end illustrates the
communication architecture. In the following discussion, we shall find the equivalent discrete
time (DT) AWGN model for the continuous time (CT) AWGN model in (19.4), and identify the
relationship between N0 in the DT model and N(t) in the CT model.

• Goal: communication in fc B 2 band.
(the (possibly complex) baseband

± /

signal lies in [−W,+W ], where W = B/2)

• observations:

1. Any signal band limited to fc B 2 can be produced by this architecture

2. At the step of C/D conversion,

± /

the
( )

LPF
(

follo
)

wed by sampl
{ }

ing at B samples/sec is
sufficient statistics for estimating X t ,XB t , as well as Xi .

First of all, what is N(t) in (19.4)?

Engineers’ definition of N(t)
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Estimate the average power dissipation at the resistor:

1
lim
T→∞

T ergo
F 2 dic (*)

F 2
t dt E N0B

T

If

∫
t=0

for some

= [

( )

constant N0, (*) holds for any narrow band with

]

cen

=

ter frequency fc and bandwidth B,
then N t is called a “white noise” with one-sided PSD N0.

Typically, white noise comes from thermal noise at the receiver antenna. Thus:

N0 kT (19.5)

where k 1.38 10 23 is the Boltzmann constant,

≈

and T is the absolute temperature. The unit of
N0 is (W

An

=

att
× −

/Hz = J).
intuitive explanation to (19.5) is as follows: the thermal energy carried by each microscopic

degree of freedom (dof) is approximately kT ; for bandwidth B and duration T , there are in total2
2BT dof; by “white noise” definition we have the total energy of the noise to be:

T
N BT =

k
0 2BT ⇒ N0

2
= kT.

Mathematicians’ definition of N t

Denote the set of all
(

real finite energy

( )

signals f(t)
)

by L2(R)

) (

, it is a vector space with the inner
product of two signals f t , g t defined by

f, g
∞

f t g t dt.
t

∀

Definition
∈ L ( )

19.3 (White noise). N

< >= ∫ =

∫
∞

t is a white

−∞

noise

( )

with

( )

two-sided PSD being constant N0 2 if
f, g R such that −∞ f

2 2
2

( )

(t)dt = ∫
∞
−∞ g (t)dt = 1, we have that

/

1.

< f,N >≜ ∫
∞

−∞
f(t)N(t)dt ∼ N (

N0
0, . (19.6)

2

2. The joint distribution of (< f,N >,< g,N is

)

>) jointly Gaussian with covariance equal to inner
product f, g .

Note: By this

<

definition,

>

N(t)
∈ L ( )

is not a stochastic process, rather it is a collection of linear mappings
that map any f 2 R to a Gaussian random variable.
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Note: Informally, we write:

( ) ( / )⇐⇒ [ ( ) ( )] =
N

E 0
N t is white noise with one-sided PSD N0 or two-sided PSD N0 2 N t N s δ

2
(t − s

(19.7)

)

Note: The concept of one-sided PSD arises when N(t) is necessarily real, since in that case power
spectrum density is symmetric around 0, and thus to get the noise power in band a, b one can get

b
noise power = F

[ ]

F

∫ one-sided
a

where Fone-sided f 2 two-sided f . In theory

(f)df = ∫
b a

df ,
a
+∫

−
Ftwo-sided f

b

of stochastic pro

−

cesses it is

(

uncomm

)

on to talk about
one-sided PSD,

(

bu
)

t
=

in engineering
( )

it is.

Verify the equivalence between CT /DT models

First, consider the relation between RF signals and baseband signals.

X(t) = Re(XB(t)
√

2ejωct),

YB(t) =
√

2LPF t
2 Y t ejωc ,

where ω 3
c

( ( ) )

= 2πfc. The LPF2 with high cutoff frequency ∼ 4fc serves to kill the high frequency

component after demodulation, and the amplifier of magnitude
√

2
(

serv
) =

es to
( )

preserve the total
energy of the signal, so that in the absence of noise we have that YB t XB t . Therefore,

YB(t) =XB(t

where N t is a complex Gaussian white noise and

) + Ñ(t) ∼ C

̃( )

E N t N s ∗ N0δ t s .

Notice that after demodulation, the PSD

[ ̃( )

of

̃

the

( )

noise

] =

is

(

N0

− )

in the imaginary part, and after the
√ /2 with N0/4 in the real part and N0/4

2 amplifier the PSD of the noise is restored to N0 2 in both
real and imaginary part.

Next, consider the equivalent discrete time signals.

/

XB(t) =
i
∑
∞ i

=−∞
XisincB(t −

B
)

Yi = ∫
∞

t=−∞
YB(t)sincB(t −

i
dt

B
Yi

)

=Xi +Zi
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where the additive noise Zi is given by:

Zi = ∫
t

∞

=−∞
Ñ(t)sincB(t −

i
dt i.i.d C 0,N0 . by (19.6)

B

if we focus on the real part of all signals, it

)

is consisten

∼ N

t with

(

the

)

real

(

AWGN c

)

hannel model in
(19.1).

Finally, the energy of the signal is preserved:

∑
∞

2

=−∞
∣Xi∣

2 = ∥XB(t)∥2
2 = ∥X(t)∥2.

i

Note: [Punchline]

CT AWGN (band limited)

0

⇐ DT C-AWGN

N
two-sided PSD

⇒

2
⇐⇒ Zi ∼ CN (0,N0

energy= X t 2dt energy= X

)

2
i

19.3 Capacity of the contin

∫

uous-time

( ) ⇐⇒

band-limited

∑ ∣ ∣

AWGN
channel

Theorem 19.2. Let MC
∗
T

channel
(T, ε,P ) the maximum number of waveforms that can be sent through the

Y (
N

, E 0
t) =X(t) +N(t) N(t)N(s) = δ

2
(t − s

such that:

)

1. in the duration [0, T ];

2. band limited to [fc −
B
2 , fc +

B for some large carrier frequency2

T
3. input energy constrained to

]

∫t

ˆ4. error probability P W W

=0 x
2(t) ≤ TP ;

[ ≠ ] ≤ ε.

Then
1

lim lim inf
ε→0 n→∞ T

logM∗
CT (T, ε,P ) = B log(1 +

P

N0B
) , (19.8)

Proof. Consider the DT equivalent C-AWGN channel of this CT model, we have that

1 1
logMCT

∗
T (T, ε,P ) = logMC

∗
−AWGN(BT, ε,P

T
/B

This is because:

)

• in time T we get to choose BT complex samples

• The power constraint in the DT model changed because for blocklength BT we have

BT

X 2
i X t 2

2 PT ,
i 1

thus per-letter power constraint is

∑
=

P

∣ ∣ = ∥ ( )∥ ≤

.B
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Calculate the rate of the equivalent DT AWGN channel and we are done.

Note the above “theorem” is not rigorous, since conditions 1 and 2 are mutually exclusive:
any time limited non-trivial signal cannot be band limited. Rigorously, one should relax 2 by
constraining the signal to have a vanishing out-of-band energy as T →∞. Rigorous approach to
this question lead to the theory of prolate spheroidal functions.

19.4 Capacity of the continuous-time band-unlimited AWGN
channel

In the limit of large bandwidth B the capacity formula (19.8) yields

P
CB=∞(P ) = lim

→∞
B log(1

B
+
N0B

) =
P

log e .
N0

It turns out that this

(

result is

)

easy to prove rigorously.

Theorem 19.3. Let M∗ T, ε,P the maximum number of waveforms that can be sent through the
channel

( ) = ( ) + ( ) E ( ) ( ) =
N0

Y t X t N t , N t N s δ
2

(t − s

such that each waveform x t

)

1. is non-zero only on

( )

[0, T ];

2. input energy constrained to ∫
T 2
t 0 x t TP ;

[ ˆ3. error probability P W

= ( ) ≤

≠W ] ≤ ε.

Then
1

lim
ε→

lim inf
0 T→∞ T

logM∗(T, ε,P ) =
P

log e (19.9)
N0

Proof. Note that the space of all square-integrable functions on [0, T , denoted L2 0, T has countable
basis (e.g. sinusoids). Thus, by changing to that basis we may assume

]

that
[

equiv
]

alent channel
model

˜ 0
j =

N˜ ˜ ˜Y Xj +Zj , Zj ∼ N (0, ,
2

and energy constraint (dependent upon duration T ):

)

j
∑
∞

˜
=
X2
j PT .

1

But then the problem is equivalent to energy-per-bit

≤

one and hence

log2M
∗(T, ε, P ) = k ⇐⇒ E∗(k, ε) = PT .

Thus,
1

lim
ε→

lim inf
0 n→∞ T

log2M
∗(T, ε, P ) =

P

limε→0 lim supk→∞
E∗(k,ε)

k

=
P

log2 e ,N0

where the last step is by Theorem 19.1.
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Figure 19.1: DT / CT AWGN model



19.5 Capacity per unit cost

Generalizing the energy-per-bit setting of Theorem 19.1 we get the problem of capacity per unit
cost :

1. Given a random transformation PY∞∣X∞ and cost function c R , we let

M∗(E, ε) = max{M ∶ (E,M, ε)-code

∶ X

,

→ +

where (E,M, ε)-code is defined as a map

}

[M]→ X∞ with every codeword x∞ satisfying

t

∞

=
c

1

(xt) ≤ E . (19.10)

2. Capacity per unit cost is defined as

∑

Cpuc ≜
1

lim
ε→

lim inf
0 E→∞

logM
E

∗ E, ε .

3. Let C(P ) be the capacity-cost function of the channel

(

(in

)

= ( ) =

the usual sense of capacity, as
defined in (17.1). Assuming P0 0 and C 0 0 it is not hard to show that:

Cpuc =
C

sup
P

(P )

P
= lim
P→0

C(P )

P
=

d
C

dP P=
P .

0

4. The surprising discovery of Verdú is that one can avoid

∣

computing

( )

C P
Cpuc directly. This is a significant help, as for many practical channels

et another

(

C
Additionally, this gives a y fundamental meaning to KL-divergence.

)

(

and derive the
P ) is unknown.

Theorem 19.4. For a stationary memoryless channel PY∞∣X∞ =∏PY ∣X with P0 = c(x0) = 0 (i.e.
there is a symbol of zero cost), we have

Cpuc =
D PY x

sup
x

∣X= PY ∣X=x0

≠x0

( ∥ )
.

c(x

In particular, Cpuc

)

=∞ if there exists x1 ≠ x0 with c(x1) = 0.

Proof. Let

CV =
D

sup
x≠x0

(PY ∣X=x∥PY ∣X=x0
)
.

c(x

Converse: Consider a

)

(E,M, ε) code W → X∞ → Y ∞ → Ŵ . Introduce an auxiliary distribution
QW,X∞,Y∞ ˆ , where a channel is a useless one,W

QY∞∣X∞ = QY∞ ≜ PY
∞
∣X=x .

0

That is, the overall factorization is

Q ∞ ∞ ˆ PW,X ,Y ,W = WPX∞∣WQY∞PŴ ∣Y∞ .
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Then, as usual we have from the data-processing for divergence

(
1

1 − ε) logM + h(ε) ≤ d(1 − ε∥ (19.11)
M

)

≤D(

= (

PW,X∞,Y

D PY∞∣
∞

X∞∥

∞ ˆ Q ˆ (19.12),W W,X ,W

Q

∞,Y∞

Y∞

∥

PX∞

)

(19.13)

= E [∑
=
d(Xt

enience

)] ,

∣ )

(19.14)
t 1

where we denoted for conv

d(x) ≜D(PY X x PY X x0
.

By the definition of CV we have

∣ = ∥ ∣ = )

d x c x CV .

Thus, continuing (19.14) we obtain

( ) ≤ ( )

(1 − ε) logM + h(ε) ≤ CV E [
t
∑
∞

=
c Xt CV E ,

1

where the last step is by the cost constraint (19.10). Thus,

(

dividing

)] ≤

b

⋅

y E and taking limits we get

Cpuc ≤ CV .

Achievability: We generalize the PPM code (19.3). For each x1 and n Z we define the
encoder f as follows:

∈ X ∈ +

f(1) = (x
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹

1, x ,

n
¹¹¹¹¹¹
1
¸
, . .

¹¹¹¹¹¹¹
.
¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
, x

¶
1

-times n

f 2 x0, x

(
´
x
¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
0, .

M−
¸
. .

)
¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
, x

¶
0

=

-times

) (19.15)

( ) (

1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
n-times
¹¹¹¹¹¹
0
¸
, . .

¹¹¹¹¹¹¹
.
¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
, x

¶
0,

´
x
¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
1, .

¸
. .
¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
, x

¶
1,

´
x
¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
0, .

¸
. .
¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
, x

¶
0 (19.16)

n-times n(M−2)-times

)

f

⋯

(M) = (

(19.17)

x
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹

0, .
¸
. .
¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
, x

¶
0 ,

´
x1, x1, . . . , x1 (19.18)

n(M−1)-times n-times

)

Now, by Stein’s lemma there exists a subset S

¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

⊂ Yn with the property that

P[Y n ∈ S∣Xn = (

[ ∈ ∣ = (

x1, . . . , x1)] ≥ 1 −

)] ≤

ε

{

1

− ( ∥ ) + ( )}

(19.19)

P Y n S Xn x0, . . . , x0 exp nD PY ∣X=x1
PY ∣X=x0

o n . (19.20)

Therefore, we propose the following (suboptimal!) decoder:

Y n ∈ ˆS

1 ∈

W 1 (19.21)

ˆY 2n
n+ S

Ô⇒ =

Ô⇒ W = 2 (19.22)

(19.23)

From the union bound we find that the overall pr

⋯

obability of error is bounded by

ε ≤ ε1 +M exp{−nD(PY ∣X=x1
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) + o(n)} .



At the same time the total cost of each codeword is given by nc x1 . Thus, taking n and after
straightforward manipulations, we conclude that

( ) →∞

Cpuc ≥
D(PY ∣X=x1

∥PY ∣X=x0
)
.

c x1

This holds for any symbol x1 ∈ X , and so we are free

(

to

)

take supremum over x1 to obtain Cpuc CV ,
as required.

≥

19.5.1 Energy-per-bit for AWGN channel subject to fading

Consider a stationary memoryless Gaussian channel with fading Hj (unknown at the receiver).
Namely,

N
0 )

0
Yj =HjXj +Zj , Hj ∼ N ( ,1 ⊥⊥ Zj ∼ N (0, .

2

The cost function is the usual quadratic one c x x2. As we discussed previously

)

, cf. (17.8), the
capacity-cost function C P is unknown in closed form, but is known to behave drastically different
from the case of non-fading

(

A

( ) =

)

′
WGN (i.e. when Hj =

( )

1). So here previous theorem comes handy, as
we cannot just compute C 0 . Let us perform a simple computation required, cf. (1.16):

D
Cpuc = sup

x≠0

(N (0, x2 + N0

2 )∥N (0, N0

2 ))

x2
(19.24)

=
1

2
log

sup
N0 x≠0

⎛

⎝
log e −

(1 + 2x
N0

)

2x2

N0

⎞

⎠
(19.25)

=
log e

(19.26)
N0

Comparing with Theorem 19.1 we discover that surprisingly, the capacity-per-unit-cost is unaffected
by the presence of fading. In other words, the random multiplicative noise which is so detrimental
at high SNR, appears to be much more benign at low SNR (recall that Cpuc C 0 ). There is one
importan

=∞

t difference, however. It should be noted that the supremization over
at x . Following the proof of the converse bound, we conclude that any co

=

x in

′(
(
)

19.25) is solved
de hoping to achieve

optimal Cpuc must satisfy a strange constraint:

∑x2
t 1 xt A x2

t A 0
t

I.e. the total energy expended by each

{∣

codew

∣ ≥

ord

} ≈

m

∑
t

ust be alm

∀

ost

>

entirely concentrated in very large
spikes. Such a coding method is called “flash signalling”. Thus, we can see that unlike non-fading
AWGN (for which due to rotational symmetry all codewords can be made “mellow”), the only hope
of achieving full Cpuc in the presence of fading is by signalling in huge bursts of energy.

This effect manifests itself in the
)

speed of convergence to C
∗(

puc with increasing constellation sizes.
E k,ε

Namely, the energy-per-bit k behaves as

E∗(k, ε)

k
= (−1.59 dB) +

√
const

Q
k

−1(ε) (AWGN) (19.27)

E∗(k, ε)

k
= (−1.59 dB) +

3

√
log k 2Q
k

( −1(ε)) (fading) (19.28)

Fig. 19.2 shows numerical details.
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Converse

−1.59 dB

Rayleigh fading, noCSI

fading+CSIR, non-fading AWGN
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E
b

d
B

,
0

N

Figure 19.2: Comparing the energy-per-bit required to send a packet of k-bits for different channel
E k,ε

models (curves represent upper and lower bounds on the unknown optimal value
∗( )

−

). As ak
comparison: to get to 1.5 dB one has to code over 6 ⋅ 104 data bits when the channel is non-fading
AWGN or fading AWGN with Hj known perfectly at the

⋅

receiver. For fading AWGN without
knowledge of Hj (noCSI), one has to code over at least 7 107 data bits to get to the same −1.5 dB.
Plot generated via [Spe15].
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