
§ 21. Channel coding with feedback

Criticism: Channels without feedback don’t exist (except storage).
Motivation: Consider the communication channel of the downlink transmission from a satellite

to earth. Downlink transmission is very expensive (power constraint at the satellite), but the uplink
from earth to the satellite is cheap which makes virtually noiseless feedback readily available at
the transmitter (satellite). In general, channel with noiseless feedback is interesting when such
asymmetry exists between uplink and downlink.

In the first half of our discussion, we shall follow Shannon to show that feedback gains “nothing”
in the conventional setup, while in the second half, we look at situations where feedback gains a lot.

21.1 Feedback does not increase capacity for stationary
memoryless channels

Definition 21.1
( )

(Code with feedback). An n,M, ε -code with feedback is specified by the encoder-
decoder pair f, g as follows:

( )

• Encoder: (time varying)

f1 ∶ [M

f2

]→ A

∶ [M] × B → A

⋮

fn ∶ [M] × Bn−1

• Decoder:

→ A

g ∶ Bn → [M

such that P

]

[W ≠ Ŵ ] ≤ ε.
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Note: [Probability space]

W uniform on

X

∼ [M

1

]

= f1(W

X f W,

)
PY ∣X

⋮

Y1

n = n(
PY X

Y

Ð

n

→

1
−1) Ð→

∣

Y
⎪

⎫⎪⎪⎪⎪⎪
⎬
⎪

W

n

Ð→
⎪⎪

ˆ =

⎪

g(Y n)

Definition 21.2 (Fundamental limits).

⎭

Mf
∗
b(n, ε

b,ε =
1

C

) = max{M ∶ ∃(n,M, ε) code with feedback.

f lim inf
n

}

→∞
logMfn

∗
b n, ε

Cfb

( )

= lim
→
Cfb,ε (Shannon capacity with feedback)

ε 0

Theorem 21.1 (Shannon 1956). For a stationary memoryless channel,

Cfb = C = Ci = sup I X;Y
PX

Proof. Achievability: Although it is obvious that Cfb

(

C, we

)

wanted to demonstrate that in fact
constructing codes achieving capacity with full feedback
(much harder) problem of non-feedback codes. Let πt

≥

can be done directly, without appealing to a
PW Y t Y t with the (random) posterior

distribution after t steps. It is clear that due to the kno
receiver have perfectly synchronized knowledge of πt. No

(⋅)

wledge
w

≜

consider

∣
of
(⋅

Y
∣
t on
ho

)

both ends, transmitter and
w the transmission progresses:

1. Initialize π0(⋅) =
1

(

M

2. At t+1)-th step,
(

ha
⋅

ving
)

knowledge of πt all messages are partitioned into classes , according
to the values ft+1 , Y t

Pa
:

P t
a

Then transmitter, possessing

≜ {j ∈ [M] ∶ ft+1(j, Y

the knowledge of the

) = a} a ∈ A .

)

true message W , selects letter X

+ (

a t 1

ft 1 W,Y t .
+ =

3. Channel perturbs Xt+1 into Yt+1 and both parties compute the updated posterior:

πt+1(j) ≜ πt(j)Bt+1(j) , Bt+1(j) ≜
PY ∣X(Yt+1∣ft+1(j, Y

t))

Notice

∑a

is

∈A πt( a)
.

that (this the crucial part!) the random multiplier satisfies:

P

E[logBt+1(
X

t(
Y

W )∣Y t] =
a

∑
∈A y
∑
∈B
π Pa)

P
log

∣ (y∣a)

where a

∑a∈A πt(Pa

π̃t a πt is a (random) distribution on .

)
,

a
= I(π̃t PY ∣X) (21.1)

The goal of the
of growth of π

( ≜

(

co

)

de
)

designer is to come up with such a partitioning a, a that the speed

t W is

(

maximal.

P )

Now, analyzing the speed

A

of growth of a random-multiplicative
process is best done by taking logs:

{P ∈ A}

( ) =∑
t

logπt j
=

logBs log
s 1

+ π0(j) .
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Intutively, we expect that the process logπt W resembles a random walk starting from logM and
having a positive drift. Thus to estimate the time it takes for this process to reach value 0 we need
to estimate the upward drift. Appealing to

(

intuition

)

and the law of large numbers we appro

−

ximate

E s
s
∑
t

logπt(W ) − logπ0(W ) ≈
=

logB .
1

Finally, from (21.1) we conclude that

[ ]

≈ ∗
the best idea is to select partitioning at each step in such a

way that π̃t PX (caid) and this obtains

logπt(W ) ≈ tC − logM ,

Mimplying that the transmission in time ≈ logterminates . The important lesson here is the following:C
The optimal transmission scheme should map messages to channel inputs in such a way that the
induced input distribution PXt+1∣Y t is approximately equal to the one maximizing I X;Y . This idea
is called posterior matching and explored in detail in [SF11].1

Converse: we are left to show that Cfb Ci.

( )

Recall the key in proving weak converse
plus the graphical model

≤

for channel coding without feedback: Fano’s inequality

W Xn Y n Ŵ . (21.2)

Then
h( ˆε ε̄ logM

→

I W ;

→

W

→

I Xn;Y n nCi.

With feedback the probabilistic picture becomes more complicated as the following figure shows
for n = 3 (dependence introduced

) +

by the extra

≤ (

squiggly

) ≤ (

arrows):

) ≤

W

X1

X2

X3

Y1

Y2

Y3

Ŵ

without feedback

W

X1

X2

X3

Y1

Y2

Y3

Ŵ

with feedback

So, while the Markov chain realtion in (21.2) is still true, we also have

n

P n n
Y n∣Xn(y ∣x ) ≠∏

=
PY ∣X yj xj !

j 1

(This is easy to see from the example where X2 = Y and

( ∣ ) ( )

1 thus PY1∣X2 has no randomness.) There is
still a large degree of independence in the channel, though. Namely, we have

(Y i−1,W )→Xi →

→ →

Yi, i 1

Y

= , . . . , n (21.3)

W n Ŵ (21.4)

1Note that the magic of Shannon’s
P

theorem is that this optimal partitioning can also be done blindly. I.e. it is
possible to preselect partitions a in a way

∈
indep
[

e
]
ndent of πt (but dependent on t) and so that the πt(Pa) ≈ PX∗ (a

with overwhelming probability and for all t 1, n .
)
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Then

h(ε) + ε̄ logM ≤ I( ˆW ;W

I W ;Y n

)

≤ ( )

(Fano)

(Data processing applied to (21.4))

= ∑
n

I
i 1
n

(W ;Yi∣Y
i−1

=
) (Chain rule)

≤ ∑ I i

1
n

(W,Y
i

−1;Y I W ;Y Y i−1 I W,Y i−1;Y I Y i−1

=
i i i ;Yi

≤ ∑
=
I(X ;

) ( ( ∣ ) = ( ) − ))

i Yi
i 1

i

) (Data processing applied

(

to (21.3))

≤ nC

The following result (without proof) suggests that feedback does not even improve the speed of
approaching capacity either (under fixed-length block coding) and can at most improve smallish
logn terms:

Theorem 21.2 (Dispersion with feedback). For

√

weakly input-symmetric DMC (e.g. additive noise,
BSC, BEC) we have:

logMf
∗
b(n, ε) = nC − nV Q−1(ε

feedbac

) +O(logn

(The meaning of this is that for such channels k can at most
terms.)

)

improve smallish logn

21.2* Alternative proof of Theorem 21.1 and Massey’s directed
information

The following alternative proof emphasizes on data processing inequality and the comparison idea
(auxiliary channel) as in Theorem 19.1.

Proof. It is obvious that Cfb ≥ C, we are left to show that Cfb ≤ Ci.

1. Recap of ≤

( )

the steps of showing the strong converse of C Ci in the last lecture: take any
n,M, ε code, compare the two distributions:

P

Q

∶ → n → n → ˆ

two key observations:

∶

W X Y

ˆXn Y n →

W (21.5)

W → W (21.6)

ˆa) Under Q, W ⊥⊥W , so that Q[W =W ] = 1 ˆwhileM P[W =W

b) The two graphical models give the factorization:

] ≥ 1 − ε.

P ˆ PW,XnPY n XnPW,Xn,Y n ˆ PW,X,W W Y n , Q ˆ nPY nP ˆW,Xn,Y n,W W Y n

thus D

= ∣ ∣

(P ∥Q) = I(Xn;Y n) measures the information flow through

=

the links

∣

Xn → Y n.

h(ε) + ε̄ logM = (
1

d 1 − ε∥ )
nd-pro

≤
c ineq

D(P ∥Q) = I(Xn mem l
;Y n

M
)

−
=
ess,stat

i
∑
=
I

1

(X;Y ) ≤ nCi

(21.7)
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2. Notice that when feedback is present, Xn Y n is not memoryless due to the transmission
protocol, let’s unfold the probabilit

=

y space
→

over time to see the dependence. As an example,
the graphical model for n 3 is given below:

If we define Q similarly as in the case without feedback, we will encounter a problem at the

∑

second
(

last inequality in (21.7), as with feedback I(
=

Xn;Y )

)

n can be significan
n
i=1 I X;Y . Consider the example where X2 Y1, we have I Xn;Y n

I X;Y .

We also make the observe that if Q is defined in (21.6), D P

(

Q I

)

X

=

n

+∞

tly larger than

( )

independent of

→/ ↝

;Y n measures the
information

( ∥ )

flow through all the and links. This motivates us to find a proper Q such that
D P Q only

( ∥

captures
)

the information flow through all the

( ∥

links

) = (

Xi Y

)

i i 1, . . . , n ,
so

]

that
=

D P Q closely relates to nCi, while still guarantees
→/

that W
1

{ = }

⊥⊥ W , so that Q W
Ŵ

→ ∶

[ ≠

.M

3. Formally, we shall restrict QW,Xn,Y n ˆ , where is the set of distributions that can be,W
factorized as follows:

∈ Q Q

QW,Xn n ˆ =

=

QWQX1∣WQY1Q , Q,Y ,W X2∣W Y1 Y2∣Y1
⋯QXn∣W,Y n−1QY nn Y n−1Q ˆ (21.8)W Y

P ˆW,Xn,Y n PWP P P,W X1∣W Y1∣X1 X2∣W,Y n
1
PY2 X

∣

∣X2
P

n

∣

∣W,Y −1PYn∣XnPŴ ∣Y n (21.9)

erify that W ⊥⊥ ˆV W under Q: W and W are d-separated

⋯

by Xn.

Notice that in the graphical models, when removing ↛ we also added the directional links
between the Yis,

↛

these links serve to maximally preserve the dependence relationships between
variables when are removed, so that Q is the “closest” to P while W W is satisfied.

Now we have that for Q d

⊥

∈ Q, (1 − ε∥ 1

⊥

M ) ≤D(P ∥Q), in order to obtain the least upper bound,
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in Lemma 21.1 we shall show that:

inf
∈Q
D(P ˆ Q ˆW,Xn,Y n,WQ

∥ W,Xn,Y n,W ) =∑
n

I
k=

;
1

(Xk Yk∣Y
k−1)

=∑
n

E
k=

Y k

1

−1[I(PXk ∣Y k−1 , PY ∣X)]

≤∑
n

=
I(EY k−1[PX ∣Y k−1], PY ∣X) (concavity of I

k
k 1

(PX , PY ∣X) in PX

n

I P ,P

)

=
k

∑
=1

( Xk Y ∣X)

≤nCi.

Following the same procedure as in (a) we have

h(ε) + ε̄ logM ≤ nCi ⇒ logM ≤
nC + h(ε)

1 − ε
⇒ Cfb,ε ≤

C
Cfb C.

1 ε

4. Notice that the above proof is also valid even when cost constrain

−

t is

⇒

present.

≤

Lemma 21.1.

inf
Q∈Q

D(PW,Xn,Y n ˆ,W ∥QW,Xn,Y n ˆ,W ) =
k

∑
n

=
I

1

(Xk;Yk∣Y
k−1 (21.10)

I Xn;Y n , dir

)

ected information

Proof. By chain rule, we can show that the minimizer

(≜ (⃗

Q

)

must satisfy the following

)

equalities:

QX,W = PX,W

=

,

∈ Q

QXk ∣W,Y k−1 PXk ∣W,Y k

Q P n .

−1 , heck!

Ŵ Y n

(c

W Y

)

and therefore

∣ = ∣

inf
Q∈Q

D(PW,Xn n ˆ ˆ,W ∥Q,Y W,Xn,Y n,W

=D(

=

PY n
1∣X1

∥QY1 ∣X1) +D P n 1

( ) + ( ∣

Y n
2 X 1 1

2

)

,Y1
QY2 Y1

X2, Y1 D PYn Xn,Y − QYn Y Xn, Y

I X1;Y 1

−

1 I X2;Y2 Y
n

1

( ∣ ∥ ∣ ∣ ) + ( ∣ ∥ ∣ ∣ − )

) +⋯ + I(Xn;Yn∣Y
−

+⋯

)

21.3 When is feedback really useful?

Theorems 21.1 and 21.2 state that feedback does not improve communication rate neither asymptot-
ically nor for moderate blocklengths. In this section, we shall examine three cases where feedback
turns out to be very useful.
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21.3.1 Code with very small (e.g. zero) error probability

Theorem 21.3 (Shannon ’56). For any DMC PY ∣X ,

Cfb,0 =
1

max min
PX y∈B

log (21.11)
PX(Sy

where

)

Sy = {a ∈ A PY X y a 0

denotes the set of input symbols that can lead to

∶

the

∣

output

( ∣ ) >

symb

}

ol y.

Note: For stationary memoryless channel,

def
≤
. def

≤
.

=
→

Thm 21.1 Shannon
C0 Cfb,0 Cfb limCfb,ε C limCε Ci sup I X;Y

ε 0 ε 0 PX

All capacity quantities above are defined with

=

(fixed-length)

=
→

bloc

=

k codes.

= ( )

Observations:

1. In DMC for both zero-error
PY ∣X , i.e., whether PY ∣X(

capacities (C0 and Cfb,0) only the support of the transition matrix
b a 0 or not, matters. The value of PY X b a 0 is irrelevant.

That is, C0 and Cfb,0 are functions
∣ ) >

of a bipartite graph between input and output alphabets.
Furthermore, the C0

A

(but not Cfb,0!) is a function of the confusability

∣ ( ∣ )

gr

>

aph – a simple
undirected graph on with a a′ connected by an edge iff b s.t. PY X b a PY X b a′ 0.

2. That Cfb,0 is not a function of

≠

the confusability graph alone

∃

is

∈

e

B

asily seen

∣

from
3

( ∣ )

comparing

∣ ( ∣ )

the

>

polygon channel (next remark) with L = 3 (for which Cfb,0 = log
A = { } B = { } =

) and the useless channel2
with 1,2,3 and 1 (for which Cfb,0 0). Clearly in both cases confusability graph
is the same – a triangle.

3. Usually C0 is very hard to compute, but Cfb,0 can be obtained in closed form as in (21.11).

Example: (Polygon channel)

2

3
4

5
1

Bipartite graph Confusability graph

• Zero-error capacity C0:

– L = 3: C0 = 0

– L = 5: C0 =
1 log 5 (Shannon ’56-Lovasz ’79).2

Achievability:

a) blocklength one: 1,3 , rate = 1 bit.

b) blocklength two:

{ }

{(1,1), (2,3), (3,5), (4,2), (5,4)}, rate = 1 log 5 bit – optimal!2
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– L = 7: 3/5 log 7 ≤ C0 ≤

= =

log 3.32 (Exact value unknown to this day)

– Even L 2k: C0 log L
2 for all k (Why? Homework.).

– Odd L = 2k + 1: C0 = log L o2 + (1) as k →∞ (Bohman ’03)

• Zero-error capacity with feedback (proof: exercise!)

Cfb,0 =
L

log ,
2

∀L,

which can be strictly bigger than C0.

4. Notice that Cfb,0 is not necessarily equal to Cfb

C0 Cfb,0

= limε→0Cfb,ε = C. Here is an example when

:

< Cfb = C

Example

<

Then

C0 = log 2

Cfb,0 = max
δ

− log max(
2

3
δ,1 − δ) (P ∗

X = (δ/3, δ/3, δ/3, δ̄))

= log
5

2
> C0 (δ∗ =

3

5

On the other hand, Shannon capacity C Cfb can be made arbitrarily close to log

)

4 by picking
the cross-over probability arbitrarily close
same.

=

to zero, while the confusability graph stays the

Proof of Theorem 21.3. 1. Fix any
messages that could have produced

(n,M,0)-code. Denote the confusability set of all possible
the received signal yt y1, . . . , yt for all t 0, 1, . . . , n by:

E ytt( ) ≜ {m M

(

∈ [ ] ∶ f1(m) ∈ Sy1 , f2

=

(m,y1) ∈ Sy2 , . . . , fn m,

)

yt S

=

−1
yt

Notice that zero-error means no ambiguity:

( ) ∈ }

ε = 0⇔ ∀yn ∈ Bn, En yn 1 or 0. (21.12)

2. The key quantities in the proof are defined as follo

∣ (

ws:

)∣ =

θfb

PX

= min max
X y∈B

PX(Sy),

∗ =

P

argmin max
yPX ∈B

PX(Sy)
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By definition, we have

∀PX ,∃y ∈ B, such that PX Sy θfb (21.13)

Notice the minimizer distribution PX
∗ is usually not the

(

caid

)

in

≥

the usual sense. This definition
also sheds light on how the encoding and decoding should be proceeded and serves to lower
bound the uncertainty reduction at each stage of the decoding scheme.

3. “
message
≤” (converse): Let PXn be he joint distribution of the codewords. Denote E0

set.
= [M] – original

t = 1: For PX1 , by (21.13), ∃y1
∗ such that:

m f1 m Sy
P 1
X1(Sy1

∗) =
∣{ ∶ ( ) ∈ ∗}∣

∣{m ∈ [M]}∣
=

∣E1(y
∗
1)∣

∣E0∣
≥ θfb.

t = 2: For PX2∣X1∈S ∗
, by (21.13),

y
1

∃y2
∗ such that:

PX2(Sy2
∗ ∣

m f1 m Sy , f2 m,y1 Sy
X 2

1
) =

∣{ ∶ ( )
1

1 ∈ Sy
∈ ∗

∗

( ∗) ∈ ∗}∣

∣{m ∶ f1(m) ∈ Sy∗1}∣
=

∣E2(y
∗
1 , y

∗
2)∣

∣E1(y∗1)∣
≥ θfb,

t = n: Continue the selection process up to yn
∗ which satisfies that:

PXn(Syn∗ ∣Xk ∈ Sy
k
∗ for k = 1, . . . , n − 1) =

∣En(y1
∗, . . . , yn

∗)∣

∣En−1(y∗1 , . . . , y
∗
n−1)∣

≥ θfb.

Finally, by (21.12) and the above selection procedure, we have

1

M
≥

∣En(y
∗
1 , . . . , y

∗
n)∣

⇒

M

≥

log

∣
θnfb

⇒ ≤ −

E0

n log θfb

Cfb,0 ≤ − θ

∣

fb

4. “≥” (achievability)

Let’s construct a code that achieves (M,n,0).

The above example with 3 illustrates that the encoder f1 partitions the space of all
messages to 3 groups. The encoder f1 at the first stage encodes the groups of messages into
a1, a2, a3 correspondingly.

∣

Wh

A∣ =

en channel outputs
∗

y1 and assume that Sy1 = {a1, a2}

( )

, then the
decoder can eliminate a total number of MPX a3 candidate messages in this round. The
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“confusability set” only contains the remaining MPX Sy1 messages. By definition of PX we
know that MPX second round,

∗
∗ (Sy1) ≤Mθfb. In the f

three

(

2 partitions
)

the remaining messages

∗

into
groups, send the group index and repeat.

By similar arguments, each interaction reduces the uncertainty by a factor of at least θfb.
After n iterations, the size of “confusability set” is upper bounded by Mθn , if Mθn 2

fb fb 1,
then zero error probability is

−

achieved. This is guaranteed by choosing logM n log
Therefore we have shown that n log θfb bits can be reliably delivered with n O 1 channel

≤

uses

= −

+ ( )

θfb.

with feedback, thus

Cfb,0 ≥ − log θfb

21.3.2 Code with variable length

Consider the example of BEC(δ) with feedback, send k bits in the following way: repeat sending
each bit until it gets through the channel correctly. The expected number of channel uses for sending
k bits is given by

l = E[n] =
k

1 − δ

We state the result for variable-length feedback (VLF) code without proof:

logMV
∗
LF (l,0) ≥ lC

Notice that compared to the scheme without feedback, there is the improvement of
√

(

nV Q−1(ε) in
the order of O

√
n), which is stronger than the result in Theorem 21.2.

This is also true in general:

logM∗
V LF (l, ε) =

lC
O log l

1 ε

Example: For BSC(0.11),
= =

without feedback, n 3000 is

+

needed

(

to

)

achieve 90% of capacity C, while
with VLF code l En 200 is enough to achiev

−

=

e that.

21.3.3 Code with variable power

Elias’ scheme of sending a number A drawn from a Gaussian distribution N (0,VarA) with linear
processing.

AWGN setup:

Yk =Xk +Zk, Zk ∼ N (0, σ2) i.i.d.

E X2
k P, power constraint in expectation

Note

∑

: If
≤

we insist the codew

[

ord

] ≤

satisfies power constraint almost surely instead on average, i.e.,
n 2
k=1Xk nP a.s., then the scheme below does not work!

2Some rounding-off errors need to be corrected in a few final steps (because PX
∗ may not be closely approximable

when very few messages are remaining). This does not change the asymptotics though.
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According to the orthogonality principle of the mininum mean-square estimation (MMSE) of A
at receiver side in every step:

A = Â +N , N ⊥ Y n
n n n .

Morev
∝

er, since all operations are lienar and everything is jointly Gaussian, Nn Y n. Since
Xn Nn− n 1

1 ⊥⊥ Y
− , the codeword we are sending at each time slot is independent of the history of

the channel output
→

(”inno
→

vation”), in order to maximize information transfer.

⊥⊥

Note that Y n ˆ ˆAn A, and the optimal estimator An (a linear combination of Y n) is a
sufficient statistic of Y n for A under Gaussianity. Then

I( ˆA;Y n) =I(A;An, Y
n

= I( ˆA;A n ˆ

= (

n

ˆ

)

) + I(A;Y ∣An

I A;An

)

)

=
1

2
log

Var(A)

y

)
.

Var(Nn

where the last equalit uses the fact that N follows a normal distribution. Var Nn can be computed
directly using standard linear MMSE results. Instead, we determine it information theoretically:
Notice that we also have

( )

I(A;Y n) = I(

= (

A;Y1) +

+

I A;Y 1
2 Y

n
1 I A;Yn Y

I X1;Y1) I

( ∣

Y

)

Y

+ ⋅ ⋅ ⋅ + ( ∣

(X ; ∣ ) + ⋅ ⋅ ⋅ + I(X ;Y

−

∣Y

)
n−1

2 2 1 n n

key
I X1;Y1 I X2;Y2 I Xn;Yn

)

=

1

( ) + ( + ⋅ ⋅ ⋅ + ( )

= n

)

2
log(1 + P ) = nC
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Therefore, with Elias’ scheme of sending A ∼ N (0,VarA), after the n-th use of the AWGN(P )
channel with feedback,

VarNn = Var(Ân −A) = 2−2nC VarA = (
P n

VarA,
P σ2

which says that the reduction of uncertainty in the estimation is exp

)

onential fast in n.
Schalkwijk-Kailath:

∼

Elias’ scheme can also be used to sen

+

d digital data.
Let W uniform on M -PAM constellation in ∈ [−1, 1], i.e., {−1,−1+ 2

M ,⋯,−1+ 2k
M ,⋯, 1}. In the

very first step W is sent (after scaling to satisfy the power constraint):

X0 =
√
PW, Y0 X0 Z0

Since Y0 and X0 are both known at the encoder, it

=

can compute

+

Z0. Hence, to describe W it is
sufficient for

−

the encoder to describe the noise realization Z0. This is done by employing the Elias’
scheme (n 1 times). After n − 1 channel uses, and the MSE estimation, the equivalent channel
output:

Ỹ0 =X0 + Z̃0, Var(Z̃0) = 2−2(n−1)C

Finally, the decoder quantizes Ỹ0 to the nearest PAM point. Notice that

≤
1

ε P [∣Z̃0∣ >
2M

] = P [2−(n−1)C ∣Z ∣ >

√
P

2M
] = 2Q(

2(n−1)C√P

√
2M

)

⇒ logM ≥ (n − 1)C + log
P

2
− logQ−1(

ε

Hence

)
2

nC

)

= +O(1 .

if the rate is strictly less than capacity, the error
√

probability decays doubly exponentially
fast as n increases. More importantly, we gained an n term in terms of logM , since for the case
without feedback we have

logM∗(n, ε) = nC −
√
nV Q−1 ε O logn .

Example =

(

: P = 1 ⇒ channel capacity C 0.5 bit per chan

(

nel

) +

use.

(

To ac

)

hieve error probability 10−3,

2Q 2(n−1)C

2M ) ≈ 10−3, so e(n−1)C

2M ≈ 3, and logM
n ≈ n−1

n C − log 8
n . Notice that the capacity is achieved to

within 99% in as few as n = 50 channel uses, whereas the best possible block codes without feedback
require n ≈ 2800 to achieve 90% of capacity.

Take-away message:
Feedback is best harnessed with adaptive strategies. Although it does not increase capacity

under block coding, feedback greatly boosts reliability as well as reduces coding complexity.
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