§ 21. Channel coding with feedback

Criticism: Channels without feedback don't exist (except storage).
Motivation: Consider the communication channel of the downlink transmission from a satellite to earth. Downlink transmission is very expensive (power constraint at the satellite), but the uplink from earth to the satellite is cheap which makes virtually noiseless feedback readily available at the transmitter (satellite). In general, channel with noiseless feedback is interesting when such asymmetry exists between uplink and downlink.

In the first half of our discussion, we shall follow Shannon to show that feedback gains "nothing" in the conventional setup, while in the second half, we look at situations where feedback gains a lot.

21.1 Feedback does not increase capacity for stationary memoryless channels

Definition 21.1 (Code with feedback). An (n, M, ϵ)-code with feedback is specified by the encoderdecoder pair (f, g) as follows:

- Encoder: (time varying)

$$
\begin{aligned}
& f_{1}:[M] \rightarrow \mathcal{A} \\
& f_{2}:[M] \times \mathcal{B} \rightarrow \mathcal{A} \\
& \vdots \\
& f_{n}:[M] \times \mathcal{B}^{n-1} \rightarrow \mathcal{A}
\end{aligned}
$$

- Decoder:

$$
g: \mathcal{B}^{n} \rightarrow[M]
$$

such that $\mathbb{P}[W \neq \hat{W}] \leq \epsilon$.

Note: [Probability space]

$$
\left.\begin{array}{l}
W \sim \text { uniform on }[M] \\
X_{1}=f_{1}(W) \xrightarrow{P_{Y \mid X}} Y_{1} \\
\vdots \\
X_{n}=f_{n}\left(W, Y_{1}^{n-1}\right) \xrightarrow{P_{Y \mid X}} Y_{n}
\end{array}\right\} \longrightarrow \hat{W}=g\left(Y^{n}\right)
$$

Definition 21.2 (Fundamental limits).

$$
\begin{aligned}
M_{f b}^{*}(n, \epsilon) & =\max \{M: \exists(n, M, \epsilon) \text { code with feedback. }\} \\
C_{f b, \epsilon} & =\liminf _{n \rightarrow \infty} \frac{1}{n} \log M_{f b}^{*}(n, \epsilon) \\
C_{f b} & =\lim _{\epsilon \rightarrow 0} C_{f b, \epsilon}
\end{aligned}
$$

(Shannon capacity with feedback)

Theorem 21.1 (Shannon 1956). For a stationary memoryless channel,

$$
C_{f b}=C=C_{i}=\sup _{P_{X}} I(X ; Y)
$$

Proof. Achievability: Although it is obvious that $C_{f b} \geq C$, we wanted to demonstrate that in fact constructing codes achieving capacity with full feedback can be done directly, without appealing to a (much harder) problem of non-feedback codes. Let $\pi_{t}(\cdot) \triangleq P_{W \mid Y^{t}}\left(\cdot \mid Y^{t}\right)$ with the (random) posterior distribution after t steps. It is clear that due to the knowledge of Y^{t} on both ends, transmitter and receiver have perfectly synchronized knowledge of π_{t}. Now consider how the transmission progresses:

1. Initialize $\pi_{0}(\cdot)=\frac{1}{M}$
2. At $(t+1)$-th step, having knowledge of π_{t} all messages are partitioned into classes \mathcal{P}_{a}, according to the values $f_{t+1}\left(\cdot, Y^{t}\right)$:

$$
\mathcal{P}_{a} \triangleq\left\{j \in[M]: f_{t+1}\left(j, Y^{t}\right)=a\right\} \quad a \in \mathcal{A} .
$$

Then transmitter, possessing the knowledge of the true message W, selects a letter $X_{t+1}=$ $f_{t+1}\left(W, Y^{t}\right)$.
3. Channel perturbs X_{t+1} into Y_{t+1} and both parties compute the updated posterior:

$$
\pi_{t+1}(j) \triangleq \pi_{t}(j) B_{t+1}(j), \quad B_{t+1}(j) \triangleq \frac{P_{Y \mid X}\left(Y_{t+1} \mid f_{t+1}\left(j, Y^{t}\right)\right)}{\sum_{a \in \mathcal{A}} \pi_{t}\left(\mathcal{P}_{a}\right)}
$$

Notice that (this is the crucial part!) the random multiplier satisfies:

$$
\begin{equation*}
\mathbb{E}\left[\log B_{t+1}(W) \mid Y^{t}\right]=\sum_{a \in \mathcal{A}} \sum_{y \in \mathcal{B}} \pi_{t}\left(\mathcal{P}_{a}\right) \log \frac{P_{Y \mid X}(y \mid a)}{\sum_{a \in \mathcal{A}} \pi_{t}\left(\mathcal{P}_{a}\right) a}=I\left(\tilde{\pi}_{t}, P_{Y \mid X}\right) \tag{21.1}
\end{equation*}
$$

where $\tilde{\pi}_{t}(a) \triangleq \pi_{t}\left(\mathcal{P}_{a}\right)$ is a (random) distribution on \mathcal{A}.
The goal of the code designer is to come up with such a partitioning $\left\{\mathcal{P}_{a}, a \in \mathcal{A}\right\}$ that the speed of growth of $\pi_{t}(W)$ is maximal. Now, analyzing the speed of growth of a random-multiplicative process is best done by taking logs:

$$
\log \pi_{t}(j)=\sum_{s=1}^{t} \log B_{s}+\log \pi_{0}(j)
$$

Intutively, we expect that the process $\log \pi_{t}(W)$ resembles a random walk starting from $-\log M$ and having a positive drift. Thus to estimate the time it takes for this process to reach value 0 we need to estimate the upward drift. Appealing to intuition and the law of large numbers we approximate

$$
\log \pi_{t}(W)-\log \pi_{0}(W) \approx \sum_{s=1}^{t} \mathbb{E}\left[\log B_{s}\right] .
$$

Finally, from (21.1) we conclude that the best idea is to select partitioning at each step in such a way that $\tilde{\pi}_{t} \approx P_{X}^{*}$ (caid) and this obtains

$$
\log \pi_{t}(W) \approx t C-\log M
$$

implying that the transmission terminates in time $\approx \frac{\log M}{C}$. The important lesson here is the following: The optimal transmission scheme should map messages to channel inputs in such a way that the induced input distribution $P_{X_{t+1} \mid Y^{t}}$ is approximately equal to the one maximizing $I(X ; Y)$. This idea is called posterior matching and explored in detail in [SF11]. 1

Converse: we are left to show that $C_{f b} \leq C_{i}$.
Recall the key in proving weak converse for channel coding without feedback: Fano's inequality plus the graphical model

$$
\begin{equation*}
W \rightarrow X^{n} \rightarrow Y^{n} \rightarrow \hat{W} . \tag{21.2}
\end{equation*}
$$

Then

$$
h(\epsilon)+\bar{\epsilon} \log M \leq I(W ; \hat{W}) \leq I\left(X^{n} ; Y^{n}\right) \leq n C_{i} .
$$

With feedback the probabilistic picture becomes more complicated as the following figure shows for $n=3$ (dependence introduced by the extra squiggly arrows):

without feedback

with feedback

So, while the Markov chain realtion in (21.2) is still true, we also have

$$
\begin{equation*}
P_{Y^{n} \mid X^{n}}\left(y^{n} \mid x^{n}\right) \neq \prod_{j=1}^{n} P_{Y \mid X}\left(y_{j} \mid x_{j}\right) \tag{!}
\end{equation*}
$$

(This is easy to see from the example where $X_{2}=Y_{1}$ and thus $P_{Y_{1} \mid X^{2}}$ has no randomness.) There is still a large degree of independence in the channel, though. Namely, we have

$$
\begin{align*}
\left(Y^{i-1}, W\right) & \rightarrow X_{i} \rightarrow Y_{i}, \quad i=1, \ldots, n \tag{21.3}\\
W & \rightarrow Y^{n} \rightarrow \hat{W} \tag{21.4}
\end{align*}
$$

[^0]Then

$$
\begin{array}{rlr}
h(\epsilon)+\bar{\epsilon} \log M & \leq I(W ; \hat{W}) & \tag{Fano}\\
& \leq I\left(W ; Y^{n}\right) & \text { (Data processing applied to (21.4)) } \\
& =\sum_{i=1}^{n} I\left(W ; Y_{i} \mid Y^{i-1}\right) & \\
& \leq \sum_{i=1}^{n} I\left(W, Y^{i-1} ; Y_{i}\right) & \left(I\left(W ; Y_{i} \mid Y^{i-1}\right)=I\left(W, Y^{i-1} ; Y_{i}\right)-I\left(Y^{i-1} ; Y_{i}\right)\right) \\
& \leq \sum_{i=1}^{n} I\left(X_{i} ; Y_{i}\right) & \\
& \text { (Data processing applied to }(\underline{(21.3)}) \\
\square &
\end{array}
$$

The following result (without proof) suggests that feedback does not even improve the speed of approaching capacity either (under fixed-length block coding) and can at most improve smallish $\log n$ terms:

Theorem 21.2 (Dispersion with feedback). For weakly input-symmetric DMC (e.g. additive noise, BSC, BEC) we have:

$$
\log M_{f b}^{*}(n, \epsilon)=n C-\sqrt{n V} Q^{-1}(\epsilon)+O(\log n)
$$

(The meaning of this is that for such channels feedback can at most improve smallish $\log n$ terms.)

21.2* Alternative proof of Theorem $\underline{21.1}$ and Massey's directed information

The following alternative proof emphasizes on data processing inequality and the comparison idea (auxiliary channel) as in Theorem 19.1.

Proof. It is obvious that $C_{f b} \geq C$, we are left to show that $C_{f b} \leq C_{i}$.

1. Recap of the steps of showing the strong converse of $C \leq C_{i}$ in the last lecture: take any (n, M, ϵ) code, compare the two distributions:

$$
\begin{align*}
& P: W \rightarrow X^{n} \rightarrow Y^{n} \rightarrow \hat{W} \tag{21.5}\\
& Q: W \rightarrow X^{n} \quad Y^{n} \rightarrow \hat{W} \tag{21.6}
\end{align*}
$$

two key observations:
a) Under $Q, W \Perp W$, so that $\mathbb{Q}[W=\hat{W}]=\frac{1}{M}$ while $\mathbb{P}[W=\hat{W}] \geq 1-\epsilon$.
b) The two graphical models give the factorization:

$$
P_{W, X^{n}, Y^{n}, \hat{W}}=P_{W, X^{n}} P_{Y^{n} \mid X^{n}} P_{\hat{W} \mid Y^{n}}, \quad Q_{W, X^{n}, Y^{n}, \hat{W}}=P_{W, X^{n}} P_{Y^{n}} P_{\hat{W} \mid Y^{n}}
$$

thus $D(P \| Q)=I\left(X^{n} ; Y^{n}\right)$ measures the information flow through the links $X^{n} \rightarrow Y^{n}$.

$$
\begin{equation*}
h(\epsilon)+\bar{\epsilon} \log M=d\left(1-\epsilon \| \frac{1}{M}\right) \stackrel{\text { d-proc ineq }}{\leq} D(P \| Q)=I\left(X^{n} ; Y^{n}\right) \stackrel{\text { mem-less }, \text { stat }}{=} \sum_{i=1}^{n} I(X ; Y) \leq n C_{i} \tag{21.7}
\end{equation*}
$$

2. Notice that when feedback is present, $X^{n} \rightarrow Y^{n}$ is not memoryless due to the transmission protocol, let's unfold the probability space over time to see the dependence. As an example, the graphical model for $n=3$ is given below:

If we define Q similarly as in the case without feedback, we will encounter a problem at the second last inequality in (21.7), as with feedback $I\left(X^{n} ; Y^{n}\right)$ can be significantly larger than $\sum_{i=1}^{n} I(X ; Y)$. Consider the example where $X_{2}=Y_{1}$, we have $I\left(X^{n} ; Y^{n}\right)=+\infty$ independent of $I(X ; Y)$.
We also make the observe that if Q is defined in (21.6), $D(P \| Q)=I\left(X^{n} ; Y^{n}\right)$ measures the information flow through all the \nrightarrow and \leadsto links. This motivates us to find a proper Q such that $D(P \| Q)$ only captures the information flow through all the \nrightarrow links $\left\{X_{i} \rightarrow Y_{i}: i=1, \ldots, n\right\}$, so that $D(P \| Q)$ closely relates to $n C_{i}$, while still guarantees that $W \Perp W$, so that $\mathbb{Q}[W \neq$ $\hat{W}]=\frac{1}{M}$.
3. Formally, we shall restrict $Q_{W, X^{n}, Y^{n}, \hat{W}} \in \mathcal{Q}$, where \mathcal{Q} is the set of distributions that can be factorized as follows:

$$
\begin{align*}
& Q_{W, X^{n}, Y^{n}, \hat{W}}=Q_{W} Q_{X_{1} \mid W} Q_{Y_{1}} Q_{X_{2} \mid W, Y_{1}} Q_{Y_{2} \mid Y_{1}} \cdots Q_{X_{n} \mid W, Y^{n-1}} Q_{Y_{n} \mid Y^{n-1}} Q_{\hat{W} \mid Y^{n}} \tag{21.8}\\
& P_{W, X^{n}, Y^{n}, \hat{W}}=P_{W} P_{X_{1} \mid W} P_{Y_{1} \mid X_{1}} P_{X_{2} \mid W, Y_{1}} P_{Y_{2} \mid X_{2}} \cdots P_{X_{n} \mid W, Y^{n-1}} P_{Y_{n} \mid X_{n}} P_{\hat{W} \mid Y^{n}} \tag{21.9}
\end{align*}
$$

Verify that $W \Perp W$ under Q : W and \hat{W} are d-separated by X^{n}.
Notice that in the graphical models, when removing \rightarrow we also added the directional links between the $Y_{i} \mathrm{~s}$, these links serve to maximally preserve the dependence relationships between variables when \rightarrow are removed, so that Q is the "closest" to P while $W \Perp W$ is satisfied.
Now we have that for $Q \in \mathcal{Q}, d\left(1-\epsilon \| \frac{1}{M}\right) \leq D(P \| Q)$, in order to obtain the least upper bound,
in Lemma 21.1 we shall show that:

$$
\begin{aligned}
\inf _{Q \in \mathcal{Q}} D\left(P_{W, X^{n}, Y^{n}, \hat{W}} \| Q_{W, X^{n}, Y^{n}, \hat{W}}\right) & =\sum_{k=1}^{n} I\left(X_{k} ; Y_{k} \mid Y^{k-1}\right) \\
& =\sum_{k=1}^{n} \mathbb{E}_{Y^{k-1}}\left[I\left(P_{X_{k} \mid Y^{k-1}}, P_{Y \mid X}\right)\right] \\
& \left.\leq \sum_{k=1}^{n} I\left(\mathbb{E}_{Y^{k-1}}\left[P_{X_{k} \mid Y^{k-1}}\right], P_{Y \mid X}\right) \quad \text { (concavity of } I\left(P_{X}, P_{Y \mid X}\right) \text { in } P_{X}\right) \\
& =\sum_{k=1}^{n} I\left(P_{X_{k}}, P_{Y \mid X}\right) \\
& \leq n C_{i} .
\end{aligned}
$$

Following the same procedure as in (a) we have

$$
h(\epsilon)+\bar{\epsilon} \log M \leq n C_{i} \Rightarrow \log M \leq \frac{n C+h(\epsilon)}{1-\epsilon} \Rightarrow C_{f b, \epsilon} \leq \frac{C}{1-\epsilon} \Rightarrow C_{f b} \leq C .
$$

4. Notice that the above proof is also valid even when cost constraint is present.

Lemma 21.1.

$$
\begin{align*}
\inf _{Q \in \mathcal{Q}} D\left(P_{W, X^{n}, Y^{n}, \hat{W}} \| Q_{W, X^{n}, Y^{n}, \hat{W}}\right)= & \sum_{k=1}^{n} I\left(X_{k} ; Y_{k} \mid Y^{k-1}\right) \tag{21.10}\\
& \left(\triangleq \vec{I}\left(X^{n} ; Y^{n}\right), \text { directed information }\right)
\end{align*}
$$

Proof. By chain rule, we can show that the minimizer $Q \in \mathcal{Q}$ must satisfy the following equalities:

$$
\begin{aligned}
& Q_{X, W}=P_{X, W} \\
& Q_{X_{k} \mid W, Y^{k-1}}=P_{X_{k} \mid W, Y^{k-1}}, \quad \text { (check!) } \\
& Q_{\hat{W} \mid Y^{n}}=P_{W \mid Y^{n}}
\end{aligned}
$$

and therefore

$$
\begin{aligned}
& \inf _{Q \in \mathcal{Q}} D\left(P_{W, X^{n}, Y^{n}, \hat{W}} \| Q_{W, X^{n}, Y^{n}, \hat{W}}\right) \\
& =D\left(P_{Y_{1} \mid X_{1}} \| Q_{Y_{1}} \mid X_{1}\right)+D\left(P_{Y_{2} \mid X_{2}, Y_{1}} \| Q_{Y_{2} \mid Y_{1}} \mid X_{2}, Y_{1}\right)+\cdots+D\left(P_{Y_{n} \mid X_{n}, Y^{n-1}} \| Q_{Y_{n} \mid Y^{n-1}} \mid X_{n}, Y^{n-1}\right) \\
& =I\left(X_{1} ; Y_{1}\right)+I\left(X_{2} ; Y_{2} \mid Y_{1}\right)+\cdots+I\left(X_{n} ; Y_{n} \mid Y^{n-1}\right)
\end{aligned}
$$

21.3 When is feedback really useful?

Theorems 21.1 and $\underline{21.2}$ state that feedback does not improve communication rate neither asymptotically nor for moderate blocklengths. In this section, we shall examine three cases where feedback turns out to be very useful.

21.3.1 Code with very small (e.g. zero) error probability

Theorem 21.3 (Shannon '56). For any DMC $P_{Y \mid X}$,

$$
\begin{equation*}
C_{f b, 0}=\max _{P_{X}} \min _{y \in \mathcal{B}} \log \frac{1}{P_{X}\left(S_{y}\right)} \tag{21.11}
\end{equation*}
$$

where

$$
S_{y}=\left\{a \in \mathcal{A}: P_{Y \mid X}(y \mid a)>0\right\}
$$

denotes the set of input symbols that can lead to the output symbol y.
Note: For stationary memoryless channel,

$$
C_{0} \stackrel{\text { def. }}{\leq} C_{f b, 0} \stackrel{\text { def. }}{\leq} C_{f b}=\lim _{\epsilon \rightarrow 0} C_{f b, \epsilon} \stackrel{\text { Thm } 21.1}{=} C=\lim _{\epsilon \rightarrow 0} C_{\epsilon} \stackrel{\text { Shannon }}{=} C_{i}=\sup _{P_{X}} I(X ; Y)
$$

All capacity quantities above are defined with (fixed-length) block codes.
Observations:

1. In DMC for both zero-error capacities (C_{0} and $C_{f b, 0}$) only the support of the transition matrix $P_{Y \mid X}$, i.e., whether $P_{Y \mid X}(b \mid a)>0$ or not, matters. The value of $P_{Y \mid X}(b \mid a)>0$ is irrelevant. That is, C_{0} and $C_{f b, 0}$ are functions of a bipartite graph between input and output alphabets. Furthermore, the C_{0} (but not $C_{f b, 0}$!) is a function of the confusability graph - a simple undirected graph on \mathcal{A} with $a \neq a^{\prime}$ connected by an edge iff $\exists b \in \mathcal{B}$ s.t. $P_{Y \mid X}(b \mid a) P_{Y \mid X}\left(b \mid a^{\prime}\right)>0$.
2. That $C_{f b, 0}$ is not a function of the confusability graph alone is easily seen from comparing the polygon channel (next remark) with $L=3$ (for which $C_{f b, 0}=\log \frac{3}{2}$) and the useless channel with $\mathcal{A}=\{1,2,3\}$ and $\mathcal{B}=\{1\}$ (for which $C_{f b, 0}=0$). Clearly in both cases confusability graph is the same - a triangle.
3. Usually C_{0} is very hard to compute, but $C_{f b, 0}$ can be obtained in closed form as in (21.11).

Example: (Polygon channel)

Bipartite graph

Confusability graph

- Zero-error capacity C_{0} :
- $L=3: C_{0}=0$
- $L=5: C_{0}=\frac{1}{2} \log 5$ (Shannon '56-Lovasz '79).

Achievability:
a) blocklength one: $\{1,3\}$, rate $=1$ bit.
b) blocklength two: $\{(1,1),(2,3),(3,5),(4,2),(5,4)\}$, rate $=\frac{1}{2} \log 5$ bit - optimal!

- $L=7: 3 / 5 \log 7 \leq C_{0} \leq \log 3.32$ (Exact value unknown to this day)
- Even $L=2 k: C_{0}=\log \frac{L}{2}$ for all k (Why? Homework.).
- Odd $L=2 k+1: C_{0}=\log \frac{L}{2}+o(1)$ as $k \rightarrow \infty$ (Bohman '03)
- Zero-error capacity with feedback (proof: exercise!)

$$
C_{f b, 0}=\log \frac{L}{2}, \quad \forall L
$$

which can be strictly bigger than C_{0}.
4. Notice that $C_{f b, 0}$ is not necessarily equal to $C_{f b}=\lim _{\epsilon \rightarrow 0} C_{f b, \epsilon}=C$. Here is an example when

$$
C_{0}<C_{f b, 0}<C_{f b}=C
$$

Example:

Then

$$
\begin{array}{rlr}
C_{0} & =\log 2 & \\
C_{f b, 0} & =\max _{\delta}-\log \max \left(\frac{2}{3} \delta, 1-\delta\right) & \left(P_{X}^{*}=(\delta / 3, \delta / 3, \delta / 3, \bar{\delta})\right) \\
& =\log \frac{5}{2}>C_{0} & \left(\delta^{*}=\frac{3}{5}\right)
\end{array}
$$

On the other hand, Shannon capacity $C=C_{f b}$ can be made arbitrarily close to $\log 4$ by picking the cross-over probability arbitrarily close to zero, while the confusability graph stays the same.

Proof of Theorem 21.3. 1. Fix any ($n, M, 0$)-code. Denote the confusability set of all possible messages that could have produced the received signal $y^{t}=\left(y_{1}, \ldots, y_{t}\right)$ for all $t=0,1, \ldots, n$ by:

$$
E_{t}\left(y^{t}\right) \triangleq\left\{m \in[M]: f_{1}(m) \in S_{y_{1}}, f_{2}\left(m, y_{1}\right) \in S_{y_{2}}, \ldots, f_{n}\left(m, y^{t-1}\right) \in S_{y_{t}}\right\}
$$

Notice that zero-error means no ambiguity:

$$
\begin{equation*}
\epsilon=0 \Leftrightarrow \forall y^{n} \in \mathcal{B}^{n},\left|E_{n}\left(y^{n}\right)\right|=1 \text { or } 0 . \tag{21.12}
\end{equation*}
$$

2. The key quantities in the proof are defined as follows:

$$
\begin{aligned}
\theta_{f b} & =\min _{P_{X}} \max _{y \in \mathcal{B}} P_{X}\left(S_{y}\right), \\
P_{X}^{*} & =\underset{P_{X}}{\operatorname{argmin}} \max _{y \in \mathcal{B}} P_{X}\left(S_{y}\right)
\end{aligned}
$$

By definition, we have

$$
\begin{equation*}
\forall P_{X}, \exists y \in \mathcal{B} \text {, such that } P_{X}\left(S_{y}\right) \geq \theta_{f b} \tag{21.13}
\end{equation*}
$$

Notice the minimizer distribution P_{X}^{*} is usually not the caid in the usual sense. This definition also sheds light on how the encoding and decoding should be proceeded and serves to lower bound the uncertainty reduction at each stage of the decoding scheme.
3. " \leq " (converse): Let $P_{X^{n}}$ be he joint distribution of the codewords. Denote $E_{0}=[M]-$ original message set.
$\underline{t=1}$: For $P_{X_{1}}$, by (21.13), $\exists y_{1}^{*}$ such that:

$$
P_{X_{1}}\left(S_{y_{1}^{*}}\right)=\frac{\left|\left\{m: f_{1}(m) \in S_{y_{1}^{*}}\right\}\right|}{|\{m \in[M]\}|}=\frac{\left|E_{1}\left(y_{1}^{*}\right)\right|}{\left|E_{0}\right|} \geq \theta_{f b} .
$$

$\underline{t=2}$: For $P_{X_{2} \mid X_{1} \in S_{y_{1}^{*}}}$, by (21.13), $\exists y_{2}^{*}$ such that:

$$
P_{X_{2}}\left(S_{y_{2}^{*}} \mid X_{1} \in S_{y_{1}^{*}}\right)=\frac{\left|\left\{m: f_{1}(m) \in S_{y_{1}^{*}}, f_{2}\left(m, y_{1}^{*}\right) \in S_{y_{2}^{*}}\right\}\right|}{\left|\left\{m: f_{1}(m) \in S_{y_{1}^{*}}\right\}\right|}=\frac{\left|E_{2}\left(y_{1}^{*}, y_{2}^{*}\right)\right|}{\left|E_{1}\left(y_{1}^{*}\right)\right|} \geq \theta_{f b},
$$

$\underline{t=n}$: Continue the selection process up to y_{n}^{*} which satisfies that:

$$
P_{X_{n}}\left(S_{y_{n}^{*}} \mid X_{k} \in S_{y_{k}^{*}} \text { for } k=1, \ldots, n-1\right)=\frac{\left|E_{n}\left(y_{1}^{*}, \ldots, y_{n}^{*}\right)\right|}{\left|E_{n-1}\left(y_{1}^{*}, \ldots, y_{n-1}^{*}\right)\right|} \geq \theta_{f b} .
$$

Finally, by (21.12) and the above selection procedure, we have

$$
\begin{aligned}
& \frac{1}{M} \geq \frac{\left|E_{n}\left(y_{1}^{*}, \ldots, y_{n}^{*}\right)\right|}{\left|E_{0}\right|} \geq \theta_{f b}^{n} \\
\Rightarrow & M \leq-n \log \theta_{f b} \\
\Rightarrow & C_{f b, 0} \leq-\log \theta_{f b}
\end{aligned}
$$

4. " \geq " (achievability)

Let's construct a code that achieves $(M, n, 0)$.

The above example with $|\mathcal{A}|=3$ illustrates that the encoder f_{1} partitions the space of all messages to 3 groups. The encoder f_{1} at the first stage encodes the groups of messages into a_{1}, a_{2}, a_{3} correspondingly. When channel outputs y_{1} and assume that $S_{y_{1}}=\left\{a_{1}, a_{2}\right\}$, then the decoder can eliminate a total number of $M P_{X}^{*}\left(a_{3}\right)$ candidate messages in this round. The
"confusability set" only contains the remaining $M P_{X}^{*}\left(S_{y_{1}}\right)$ messages. By definition of P_{X}^{*} we know that $M P_{X}^{*}\left(S_{y_{1}}\right) \leq M \theta_{f b}$. In the second round, f_{2} partitions the remaining messages into three groups, send the group index and repeat.
By similar arguments, each interaction reduces the uncertainty by a factor of at least $\theta_{f b}$. After n iterations, the size of "confusability set" is upper bounded by $M \theta_{f b}^{n}$, if $M \theta_{f b}^{n} \leq 1, \underline{2}$ then zero error probability is achieved. This is guaranteed by choosing $\log M=-n \log \theta_{f b}$. Therefore we have shown that $-n \log \theta_{f b}$ bits can be reliably delivered with $n+O(1)$ channel uses with feedback, thus

$$
C_{f b, 0} \geq-\log \theta_{f b}
$$

21.3.2 Code with variable length

Consider the example of $\operatorname{BEC}(\delta)$ with feedback, send k bits in the following way: repeat sending each bit until it gets through the channel correctly. The expected number of channel uses for sending k bits is given by

$$
l=\mathbb{E}[n]=\frac{k}{1-\delta}
$$

We state the result for variable-length feedback (VLF) code without proof:

$$
\log M_{V L F}^{*}(l, 0) \geq l C
$$

Notice that compared to the scheme without feedback, there is the improvement of $\sqrt{n V} Q^{-1}(\epsilon)$ in the order of $O(\sqrt{n})$, which is stronger than the result in Theorem 21.2.

This is also true in general:

$$
\log M_{V L F}^{*}(l, \epsilon)=\frac{l C}{1-\epsilon}+O(\log l)
$$

Example: For BSC(0.11), without feedback, $n=3000$ is needed to achieve 90% of capacity C, while with VLF code $l=\mathbb{E} n=200$ is enough to achieve that.

21.3.3 Code with variable power

Elias' scheme of sending a number A drawn from a Gaussian distribution $\mathcal{N}(0, \operatorname{Var} A)$ with linear processing.

AWGN setup:

$$
\begin{aligned}
& Y_{k}=X_{k}+Z_{k}, \quad Z_{k} \sim \mathcal{N}\left(0, \sigma^{2}\right) \text { i.i.d. } \\
& \mathbb{E}\left[X_{k}^{2}\right] \leq P, \quad \text { power constraint in expectation }
\end{aligned}
$$

Note: If we insist the codeword satisfies power constraint almost surely instead on average, i.e., $\sum_{k=1}^{n} X_{k}^{2} \leq n P$ a.s., then the scheme below does not work!

[^1]
Encoder

Decoder

some linear function of Y^{n}
According to the orthogonality principle of the mininum mean-square estimation (MMSE) of A at receiver side in every step:

$$
A=\hat{A}_{n}+N_{n}, \quad N_{n} \perp Y^{n} .
$$

Morever, since all operations are lienar and everything is jointly Gaussian, $N_{n} \Perp Y^{n}$. Since $X_{n} \propto N_{n-1} \Perp Y^{n-1}$, the codeword we are sending at each time slot is independent of the history of the channel output ("innovation"), in order to maximize information transfer.

Note that $Y^{n} \rightarrow \hat{A}_{n} \rightarrow A$, and the optimal estimator \hat{A}_{n} (a linear combination of Y^{n}) is a sufficient statistic of Y^{n} for A under Gaussianity. Then

$$
\begin{aligned}
I\left(A ; Y^{n}\right) & =I\left(A ; \hat{A}_{n}, Y^{n}\right) \\
& =I\left(A ; \hat{A}_{n}\right)+I\left(A ; Y^{n} \mid \hat{A}_{n}\right) \\
& =I\left(A ; \hat{A}_{n}\right) \\
& =\frac{1}{2} \log \frac{\operatorname{Var}(A)}{\operatorname{Var}\left(N_{n}\right)} .
\end{aligned}
$$

where the last equality uses the fact that N follows a normal distribution. $\operatorname{Var}\left(N_{n}\right)$ can be computed directly using standard linear MMSE results. Instead, we determine it information theoretically: Notice that we also have

$$
\begin{aligned}
I\left(A ; Y^{n}\right) & =I\left(A ; Y_{1}\right)+I\left(A ; Y_{2} \mid Y_{1}\right)+\cdots+I\left(A ; Y_{n} \mid Y^{n-1}\right) \\
& =I\left(X_{1} ; Y_{1}\right)+I\left(X_{2} ; Y_{2} \mid Y_{1}\right)+\cdots+I\left(X_{n} ; Y_{n} \mid Y^{n-1}\right) \\
& \stackrel{\text { key }}{=} I\left(X_{1} ; Y_{1}\right)+I\left(X_{2} ; Y_{2}\right)+\cdots+I\left(X_{n} ; Y_{n}\right) \\
& =n \frac{1}{2} \log (1+P)=n C
\end{aligned}
$$

Therefore, with Elias' scheme of sending $A \sim \mathcal{N}(0, \operatorname{Var} A)$, after the n-th use of the AWGN (P) channel with feedback,

$$
\operatorname{Var} N_{n}=\operatorname{Var}\left(\hat{A}_{n}-A\right)=2^{-2 n C} \operatorname{Var} A=\left(\frac{P}{P+\sigma^{2}}\right)^{n} \operatorname{Var} A
$$

which says that the reduction of uncertainty in the estimation is exponential fast in n.
Schalkwijk-Kailath: Elias' scheme can also be used to send digital data.
Let $W \sim$ uniform on M-PAM constellation in $\epsilon[-1,1]$, i.e., $\left\{-1,-1+\frac{2}{M}, \cdots,-1+\frac{2 k}{M}, \cdots, 1\right\}$. In the very first step W is sent (after scaling to satisfy the power constraint):

$$
X_{0}=\sqrt{P} W, \quad Y_{0}=X_{0}+Z_{0}
$$

Since Y_{0} and X_{0} are both known at the encoder, it can compute Z_{0}. Hence, to describe W it is sufficient for the encoder to describe the noise realization Z_{0}. This is done by employing the Elias' scheme ($n-1$ times). After $n-1$ channel uses, and the MSE estimation, the equivalent channel output:

$$
\widetilde{Y}_{0}=X_{0}+\widetilde{Z}_{0}, \quad \operatorname{Var}\left(\widetilde{Z}_{0}\right)=2^{-2(n-1) C}
$$

Finally, the decoder quantizes \widetilde{Y}_{0} to the nearest PAM point. Notice that

$$
\begin{aligned}
\epsilon & \leq \mathbb{P}\left[\left|\widetilde{Z}_{0}\right|>\frac{1}{2 M}\right]=\mathbb{P}\left[2^{-(n-1) C}|Z|>\frac{\sqrt{P}}{2 M}\right]=2 Q\left(\frac{2^{(n-1) C} \sqrt{P}}{2 M}\right) \\
\Rightarrow \log M & \geq(n-1) C+\log \frac{\sqrt{P}}{2}-\log Q^{-1}\left(\frac{\epsilon}{2}\right) \\
& =n C+O(1) .
\end{aligned}
$$

Hence if the rate is strictly less than capacity, the error probability decays doubly exponentially fast as n increases. More importantly, we gained an \sqrt{n} term in terms of $\log M$, since for the case without feedback we have

$$
\log M^{*}(n, \epsilon)=n C-\sqrt{n V} Q^{-1}(\epsilon)+O(\log n) .
$$

Example: $P=1 \Rightarrow$ channel capacity $C=0.5$ bit per channel use. To achieve error probability 10^{-3}, $2 Q\left(\frac{2^{(n-1) C}}{2 M}\right) \approx 10^{-3}$, so $\frac{e^{(n-1) C}}{2 M} \approx 3$, and $\frac{\log M}{n} \approx \frac{n-1}{n} C-\frac{\log 8}{n}$. Notice that the capacity is achieved to within 99% in as few as $n=50$ channel uses, whereas the best possible block codes without feedback require $n \approx 2800$ to achieve 90% of capacity.

Take-away message:

Feedback is best harnessed with adaptive strategies. Although it does not increase capacity under block coding, feedback greatly boosts reliability as well as reduces coding complexity.

MIT OpenCourseWare
https://ocw.mit.edu

6.441 Information Theory

Spring 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

[^0]: ${ }^{1}$ Note that the magic of Shannon's theorem is that this optimal partitioning can also be done blindly. I.e. it is possible to preselect partitions \mathcal{P}_{a} in a way independent of π_{t} (but dependent on t) and so that the $\pi_{t}\left(\mathcal{P}_{a}\right) \approx P_{X}^{*}(a)$ with overwhelming probability and for all $t \in[1, n]$.

[^1]: ${ }^{2}$ Some rounding-off errors need to be corrected in a few final steps (because P_{X}^{*} may not be closely approximable when very few messages are remaining). This does not change the asymptotics though.

