
§ 25. Evaluating R(D). Lossy Source-Channel separation.

Last time: For stationary memoryless (iid) sources and separable distortion, under the assumption
that Dmax <∞.

R( ˆD) = Ri(D) = inf I
PS∣S ∶

S;S .
ˆ E ˆd(S,S)≤D

( )

25.1 Evaluation of R D

So far we’ve proved some properties

( )

about the rate distortion function, now we’ll compute its value
for a few simple statistical sources. We’ll do this in a somewhat unsatisfying way: guess the answer,
then verify its correctness. At the end, we’ll show that there is a pattern behind this method.

25.1.1 Bernoulli Source
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and a smaller mutual information. Then consider the chain:
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( ) = ∣ ( ) − h(D)∣+.

For example, when p = 1/2, D = .11, then R(D) = 1/2 bit. In the Hamming game where we
compressed 100 bits down to 50, we indeed can do this while achieving 11% average distortion,
compared to the naive scheme of storing half the string and guessing on the other half, which
achieves 25% average distortion.

Interpretation: By WLLN, the distribution PnS = Ber p n concentrates near the Hamming
sphere of radius np as n grows large. The above result about Hamming sources tells us that the
optimal reconstruction points are from Pn where
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′
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Hamming Spheres

It is interesting to note that none of the reconstruction points are the same as any of the possible
source values (with high probability).
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Again, the upper and lower bounds agree.

The interpretation in the Gaussian case is very similar
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Remark: The theory of quantization and the rate distortion theory at large have played a
significant role in pure mathematics. For instance, Hilbert’s thirteenth problem was partially solved
by Arnold and Kolmogorov after they realized that they could classify spaces of functions looking
at the optimal quantizer for such functions.

25.2* Analog of saddle-point property in rate-distortion

In the computation of R(D) for the Hamming and Gaussian source, we guessed the correct form
of the rate distortion function. In both of their converse arguments, we used the same trick to
establish that any other P ˆ∣ gave a larger value for R(D). In this section, we formalize this trick,S S
in an analogous manner to the saddle point property of the channel capacity. Note that typically
we don’t need any tricks to compute R(D), since we can obtain a solution in parametric form to
the unconstrained convex optimization

min I( ˆ ˆS;S λE d S,S
PŜ∣S

In fact there are also iterative algorithms (Blah

) +

ut-Arimoto)

[ ( )]

that computes R(D). However, for
peace of mind it is good to know there are some general reasons why tricks like we used in
Hamming/Gaussian actually are guaranteed to work.
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Remarks:

1. The first part is a sufficient condition for optimality of a given PXY ∗ . The second part gives a
necessary condition that is convenient to narrow down the search. Indeed, typically the set of
PXY satisfying those conditions is rich enough to infer from (25.2):

dPX
log
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x
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( ∣y
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∗
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The R(D) = ∣1 − h(D)∣+, but there are a bunch of non-equivalent optimal PY ∣X , PX ∣Y and
PY ’s.

Proof. First part is just a repetition of the proofs above, so we focus on part 2. Suppose there exists
a counter-example PXY achieving
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X Y I
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and thus
D(PX ∣Y ∥PX ∣Y ∗ ∣PY ) <∞ . (25.3)

Before going to the actual proof, we describe the principal idea. For every λ we can define a joint
distribution

PX,Yλ = λPX,Y + (1 λ
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Then, we can compute

I(X;Yλ) = E [
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From here we will conclude, similar to Prop. 4.1, that the first term is o λ and thus for sufficiently
small λ we should have I(X;Yλ) < R(D)
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tradicting optimality of coupling PX,Y .
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where in the last step we applied the result from Lecture 4
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where in the penultimate step we used Dλ(y) = 0 on {ρ1 = 0}. Hence, (25.13) shows

D(P
(λ)
∣ ∥PX ∣Y ∗ ∣PYλ) = o(λ) , λ→ 0 .

X Y

Finally, since

P
(λ
X

)
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we have

I(X;Yλ) =D(P
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X
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= I∗ + λ(I1 − I
∗) o(λ ,

( ∣ )]
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contradicting the assumption
I(X;Yλ) ≥ I

∗ = R(D) .

25.3 Lossy joint source-channel coding

The lossy joint source channel coding problem refers to the fundamental limits of lossy compression
followed by transmission over a channel.

Problem Setup:
(

or an A
)

ˆF -valued ({S1, S2, . . .} and distortion metric d ∶ Ak ×Ak → R, a lossy
JSCC is a pair f, g such that

fk Ð→ n Ð
ch.

S X →
g

Y n Ð→ Ŝk

Definition 25.1. (f, g) is a ( ˆk,n,D)-JSCC if E[d(Sk, Sk)] ≤D.

Source JSCC enc Channel JSCC dec Ŝk

R = k
n

Sk Xn Y n

where ρ is the bandwidth expansion factor :

ρ =
n

channel uses/symbol.
k

Our goal is to minimize ρ subject to a fidelity guarantee by designing the encoder/decoder pairs
smartly. The asymptotic fundamental limit for a lossy JSCC is

ρ∗(D) =
n

lim sup
n→∞

min{ k,n,D code
k

For simplicity in this lecture we will focus on JSCC

∶ ∃(

for

)

stationary

− }

memoryless sources with
separable distortion + stationary memoryless channels.
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25.3.1 Converse

The converse for the JSCC is quite simple. Note that since there is no ε under consideration, the
strong converse is the same as the weak converse. The proof architecture is identical to the weak
converse of lossless JSCC which uses Fano’s inequality.

Theorem 25.3 (Converse). For any source such that

Ri(D) =
1

lim
k→∞

I Sk ˆinf ;Sk
k ˆP k k

ˆk kS ∣S
∶E[d(S ,S )]≤D

we have

( )

ρ∗(D) ≥
Ri(D)

Ci

Remark: The requirement of this theorem on the source isn’t too stringent; the limit expression
for Ri D typically exists for stationary sources (like for the entropy rate)

ˆProof.

(

Tak

)

e a (k,n,D)-code Sk →Xn

ˆinf

→ Y n → Sk. Then

I(Sk;Sk) ≤ I(Sk ˆ;Sk
P ˆk ∣ kS S

Which follows from data processing and taking

)

inf/sup.

≤ I(Xk;Y k) ≤ sup I Xn;Y n

P nX

→∞

Normalizing

(

by 1/k

)

and taking the liminf
as n

1
(LHS) lim inf

n→∞ n
sup
PXn

I(Xn;Y n) = Ci

(RHS) lim inf
n→∞

1 ˆinf I Skn ;Skn Ri D
k Pn ˆkS n ∣ kS n

And therefore, any sequence of

( ) = ( )

(kn, n,D)-codes satisfies

n
lim sup
n→∞ kn

≥
Ri(D)

Ci

Note: Clearly the assumptions in Theorem 25.3 are satisfied for memoryless sources. If the source
S is iid Bern(1/2) with Hamming distortion, then Theorem 25.3 coincides with the weak converse
for channel coding under bit error rate in Theorem 14.4:

k ≤
nC

1 − h pb

which we proved using
(

ad ho
)

c
=

techniques. In the case
SNR

)

of channel with cost constraints, e.g., the
AWGN channel with C 1

(

2 log(1 + SNR), we have

pb ≥ h
−1 (1 −

C(SNR)

R

This is often referred to as the Shannon limit in plots comparing

)

the bit-error rate of practical codes.
See, e.g., Fig. 2 from [RSU01] for BIAWGN (binary-input) channel. This is erroneous, since the
pb above refers to the bit-error of data bits (or systematic bits), not all of the codeword bits. The
latter quantity is what typically called BER in the coding-theoretic literature.
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25.3.2 Achievability via separation

The proof strategy is similar to the lossless JSCC: We construct a separated lossy compression
and channel coding scheme using our tools from those areas, i.e., let the JSCC encoder to be
the concatenation of a loss compressor and a channel encoder, and the JSCC decoder to be the
concatenation of a channel decoder followed by a loss compressor, then show that this separated
construction is optimal.

Theorem 25.4. For any stationary memoryless source ( ˆPS , , , d satisfying assumption A1
(below), and for any stationary memoryless channel PY ∣X ,

A A )

ρ∗(D) =
R(D)

C

Note: The assumption on the source is to control the distortion incurred by the channel decoder
making an error. Although we know that this is a low-probability event, without any assumption
on the distortion metric, we cannot say much about its contribution to the end-to-end average
distortion. This will not be a problem if the distortion metric is bounded (for which Assumption A1
is satisfied of course). Note that we do not have this nuisance in the lossless JSCC because we at
most suffer the channel error probability (union bound).

The assumption is rather technical which can be skipped in the first reading. Note that it is
trivially satisfied by bounded distortion (e.g., Hamming), and can be shown to hold for Gaussian
source and MSE distortion.

Proof. The converse direction follows from the previous theorem. For the other direction, we
constructed a separated compression / channel coding scheme. Take

Sk →W → Ŝk compressor to W ∈ [2kR(D)+o(k)] with E[d(Sk ˆ, Sk D

W →Xn → Y n → Ŵ maximal probability of error channel code

)]

(assuming

≤

kR(D) ≤ nC + o(n

with P ˆW W ε PW

))

So that the overall system is

[ =/ ] ≤ ∀

Sk ˆW Xn Y n Ŵ Sk

Note that here we need a maxim

Ð→

um probabilit

Ð→ Ð

y

→

of error

Ð→

code

Ð→

since when we concatenate these
two schemes, W at the input of the channel is the output of the source compressor, which is not
guaranteed to be uniform. Now that we have a scheme, we must analyze the average distortion to
show that it meets the end-to-end distortion constraint. We start by splitting the expression into
two cases

E[d(Sk ˆ, Sk

By assumption on our lossy

)] = E[ ( k ˆd S ,Sk ˆW 1 W W E k ˆd S ,Sk ˆ ˆW 1 W W

code, w
{

e kno

(

w
ˆ

)) { = }] + [ ( ( )) { =/ }]

that the probability of the event W W
cannot E ˆsay anything about d Sk, Sk

≤

=/

Ŵ
}

that the first term is D. In the second term, we know

[ ( ( ))]

is small by assumption on our channel code, but we

∃ → →

unless, for example, d is bounded. But by Lemma 25.1
(below), code Sk ˆW Sk such that

(1) E[d(Sk ˆ, Sk)] ≤D holds

(2) d(ak ˆ
0, S

k

length k
)

from
≤ ˆL for all quantization outputs Sk, where ak0 = (a0, . . . , a0) is some fixed string of

the Assumption A1 below.
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The second bullet says that all points in the reconstruction space are “close” to some fixed string.
Now we can deal with the troublesome term

E[d(Sk ˆ, Sk(Ŵ ))1{W =/ Ŵ

(by point (2) above)

}] ≤ E[1{W =/ Ŵ}λ(d(Sk, âk0
ˆλE 1 W W d Sk, âk0

λo 1 λLε 0 as ε 0

) +

≤

ak Ŝk

[ { =/ } ( )] +

d 0,

≤ ( ) + → →

ˆλ

(

E[1{W

))]

=/ W}L]

where in the last step we applied the same uniform integrability argument that showed vanishing of
the expectation in (24.20) before.

(
In
)

all, our scheme meets the average distortion constraint. Hence we conclude that for ∀ρ
R D

>

C ,∃ sequence of (k,n,D + o(1))-codes.

The following assumption is critical to
A

the previous
Assumption A1: For a source (

theorem:
ˆ ˆPS , ,A, d), ∃λ ≥ 0, a0 ∈ A, â0 ∈ A such that

1. d(a, â) ≤ λ(d(a, âo) + d

2. E d S, â0 (so that

(a0, â (generalized triangle inequality)

max

∀a, â

D

))

too).

3. E

[ ( )] <∞ <∞

[d( ˆa0, S)] <∞ for any output distribution P ˆ achieving the rate-distortion function RS (D
at some D.

)

4. d(a0, â0) <∞.

ˆThis assumption says that the spaces and have “nice centers”, in the sense that the distance
between any two points is upper bounded

A

by a constan
A

t times the distance from the centers to each
point (see figure below).

âa

a0 â0

A Â

b
b

b b

But the assumption isn’t easy to verify, or clear which sources satisfy the assumptions. Because of
this, we now give a few sufficient conditions for Assumption A1 to hold.

Trivial Condition: If the distortion function is bounded, then the assumption A1 holds
ˆautomatically. In other words, if we have a discrete source with finite alphabet , and a

finite distortion function d(a, â) <∞, then A1 holds.

A

More

= A

general

(

ly,

)

w

=

e ha

(

ve the following criterion.

ˆTheorem 25.5 (Criterion for satisfying A1). If and d a, â ρq a, â for

∣A∣

some

∣A∣ <

metric

∞

ρ
with q 1, and Dmax inf â0 E d S, â0 , then A1 holds.

)

Proof.

≥

Take a0

≜ [ (

finite

)] <

= â0 that achieves D

∞

p (in fact, any points can serve as centers in a metric
space). Then

(
1

2
ρ(a, â))q ≤ (

1

2
ρ(a, a0) +

1 q

ρ
2

(a0, â

(Jensen’s)

))

≤
1

2
ρq(a, a0) +

1
ρq

2
(a0, â
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And thus d(a, â) ≤ 2q−1(d(a, a0) + d(a0, â)). Taking λ = 2q−1 verifies (1) and (2) in A1. To verify
(3), we can use this generalized triangle inequality for our source

d( ˆ ˆa0, S) ≤ 2q−1(d(a0, S) + d(S,S

Then taking the expectation of both sides gives

))

E[ ˆd(a0, S)] ≤ 2q−1(E[d(a0, S)] +E
2

[d( ˆS,S)])

≤ q−1(Dmax +D

So that condition (3) in A1 holds.

) <∞

So we see that metrics raised to powers (e.g. squared Euclidean norm) satisfy the condition A1.
The lemma used in Theorem 25.4 is now given.

∣
ˆ ˆLemma

>

25.1.

[ (

Fix

)]

a source satisfying A1 and an arbitrary P ˆ . Let R I S;S , L max E d a0, S , d a0, â0S S

and
∈

ˆD E d S,S
(

. Then, there exists a k,2kR,D -code such that for every reconstruction point
ˆx̂ Ak we have d ak0, x̂ L.

> ( ) > { [ ( )] ( )}

ˆ ˆ

( )

Proof. Let X = Ak,

) ≤

X = Ak and PX = P kS , PY ∣X = P kˆ∣ . Then apply the achievability bound for
S S

excess distortion from Theorem 24.4 with

d1(x, x̂)
⎪
⎧⎪

= ⎨
d(x, x̂) d x̂

o/w

(ak0, ) ≤

⎪⎪+∞

L

Note that this is NOT a separable distortion

⎩

metric. Also note that without any change in d1-
distortion we can remove all (if any) reconstruction points x̂ with d ak0, x̂ L. Furthermore, from

ˆthe WLLN we have for any D
( )

>D′ > E[d
>

P d X,Y D P d

(S,S′)]

′ d ak ˆSk ˆ, Sk D′ P , Sk1 0 L 0

ˆ ˆas k (since E d

[

S,

(

S

)

D

>

and

] ≤

E

[

a0

(

, S L

)

).

>

Th

]

us,

+ [ ( ) > ]→

points
→∞

c1, . . . , cM

[

suc
( )] < ′ [ ] <

( )

overall we get M 2kR reconstruction
h that

P[ min
∈[ ]

d(Sk, cj) >D 0

=

j M

′

and d(ak0, cj L. By adding cM 1 â0, . . . , â0 we get

]→

E

) ≤

k, c

+

[
∈
min
[ + ]

d(S j)] ≤D E
j M 1

= ( )

′ + [d(Sk, cM+1

where the last estimate follows from uniform integrabi

)1 d ′
]

Sk, cj D D
M

′ o 1 ,

lit

{ min
j

y

∈[

≤

as in

(

the vanishing

) > }]

of

=

expectation

+ ( )

in (24.20).
Thus, for sufficiently large n the expected distortion is D, as required.

To summarize the results in this section, under stationarity and memorylessness assumptions on
the source and the channel, we have shown that the following separately-designed scheme achieves
the optimal rate for lossy JSCC: First compress the data, then encode it using your favorite channel
code, then decompress at the receiver.

Source JSCC enc Channel
R(D) bits/sec ρC bits/sec
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25.4 What is lacking in classical lossy compression?

Examples of some issues with the classical compression theory:

• compression: we can apply the standard results in compression of a text file, but it is extremely
difficult for image files due to the strong spatial correlation. For example, the first sentence
and the last in Tolstoy’s novel are pretty uncorrelated. But the regions in the upper-left
and bottom-right corners of one image can be strongly correlated. Thus for practicing the
lossy compression of videos and images the key problem is that of coming up with a good
“whitening” basis.

• JSCC: Asymptotically the separation principle sounds good, but the separated systems can
be very unstable - no graceful degradation. Consider the following example of JSCC.

Example: Source = Bern(1 ,2) channel = BSC(δ).

R
1. separate compressor and channel encoder designed for

(D)
1C(δ

2. a simple JSCC:

)

ρ

=

= 1,Xi = Si
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