
§ 27. Examples of MACs. Maximal Pe and zero-error capacity.

27.1 Recap

Last time we defined the multiple access channel as the sequence of random transformations

{P n n n
Y n∣AnBn ∶ A × B → Y , n = 1,2, . . .

Furthermore, we showed that its capacity region is
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Note that the union of Pentas need not look like a Penta region itself, as we will see in a later
example.

27.2 Orthogonal MAC

The trivial MAC
(

is when each input sees its own independent channel: PY AB PY APY B where
the receiver sees YA, YB . In this situation, we expect that each transmitter can achieve it’s own
capacity, and no more than

)

that. Indeed, our theorem above shows exactly this:
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Where in this case the last constraint is not
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⎪

applicable;

+ ≤ (

it does not

)

restrict the capacity region.
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Hence our capacity region is a rectangle bounded by the individual capacities of each channel.

27.3 BSC MAC

Before introducing this channel, we need a definition and a theorem:

Definition 27.1 (Sum Capacity). Csum max R1 R2 R1,R2 C

Theorem 27.1. Csum = maxA⊥B I(A,B;

≜

⊥ Y

{ + ∶ ( ) ∈ }

Proof. Since the max above is achieved by

)

an extreme point on one of the Penta regions, we can
drop the convex closure operation to get
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Where the last step follows from the definition of Penta.
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Now w
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e need to show that the constraint
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R1 R2 in Penta is active at at least one point, so we need to show that I A,B;Y I A;Y B
I B;Y
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∣A) when A ⊥⊥ B, which follows from applying Kolmogorov identities
( ) ≤ ( ∣ )+

I(A;Y,B) =

Ô

0 + I(A

I

∣ ) = ( ) + ( ∣ ) Ô⇒ ( ) ≤ ( ∣ )

Hence maxPA,PB R1 R2

⇒

R1

(

;Y B

) =

I A

(

;Y

) +

I A

(

;B Y I A;Y I A;Y B

A,B;Y I A;Y I B;Y ∣A) ≤ I(A;Y ∣B) + I(B;Y ∣A

{ + ∶ ( ,R2) ∈ Penta(PA, PB

)

)} = maxPAPB I(A,B;Y )

We now look at the BSC MAC, defined by

Y = A +

∼ (

B
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)
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Ber
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Since the output Y can only be 0 or 1, the

∈

capacit

{ }

y of this channel can be no larger than 1 bit. If
B doesn’t transmit at all, then A can achieve capacity 1 h δ (and B can achieve capacity when
A doesn’t transmit), so that R1,R2 1 h δ . By time sharing we can obtain any point between
these two. This gives an inner bound

− (

≤
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−

the
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or an outer bound, we use Theorem
27.1, which gives
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Hence R1 +R2 ≤ 1 − h(δ), so by this outer bound,
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Remark: Even though this channel seems so simple, there are still hidden things about it, which
we’ll see later.

27.4 Adder MAC

Now we analyze the Adder MAC, which is a noiseless channel defined by:

Y

A,

= A +B (over Z
B 0,1

)

Intuitively, the game here is that when both A and B send either 0 or 1, we receiver 0 or 2 and can
decode perfectly. However, when A sends 0

∈

and

{

B

}

send 1, the situation is ambiguous. To analyze
this channel, we start with an interesting fact
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Now we can ask: how do we achieve the corner points of the region, e.g. R1 1 2 and R2 1? The
answer gives insights into how to co
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Which we recognize as a BEC(1/2) (no preference to either 1 or 1), which has capacity 1 2. How
ˆdo we decode? The idea is successive cancellation, where first

−

we decode A, then remove A
/

from Y ,
then decode B.

An

Bn

Y n Dec
BEC(1/2)

Ân

B̂n

Using this strategy, we can use a single user code for the BEC (an object we understand well) to
attain capacity.

27.5 Multiplier MAC

The Multiplier MAC is defined as

Y

A
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0,1 , B
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Therefore the R1

)

+R2 constraint is not active, so our region is a rectangle.

By symmetry, we take PB = Ber(1/2). When PA = Ber(p), the output has H(Y ) = p + h(p).
Using the above fact, the capacity region for the Multiplier MAC is

C =
R
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We can view this as the graph of the binary entropy function on its side, parametrized by p:

R1

1

1/2

R2

1

To achieve the extreme point 1,1 2 of this region, we can use the same scheme as for the Adder
MAC: take the codebook of A

(

to be
/ )

{0, 1}n, then B sees a BEC(1/2). Again, successive cancellation
decoding can be used.

For future reference we note:

278



Lemma 27.1. The full capacity region of multiplier MAC is achieved with zero error.

Proof. For a given codebook D of user B the number of messages that user A can send equals the
total number of erasure patters that codebook D can tolerate with vanishing probability of error.
Fix rate R2 1 and let D be a row-span of a random linear nR2 n binary matrix. Then randomly
erase each column with probability 1 R2 ε. Since on average there will be n R2 ε columns left,
the resulting

<

matrix is still full-rank
−

and the
−

decoding is possible.

×

In other words,
( + )

P[D is decodable,# of erasures ≈ n(1

Hence, by counting the total number of erasures, for a random

−R2 − ε)]→ 1 .

linear code we have

E[# of decodable erasure patterns for D 2nh(1−R2−ε)+o(n) .

And result follows by selecting a random element of the D-ensem

] ≈

ble and then taking the codebook
of user A to be the set of decodable erasure patterns for a selected D.

27.6 Contraction MAC

The Contraction MAC is defined as
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Here, B is received perfectly, We can use the fact
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above to see that the capacity region is
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or future reference we note the following:

Lemma 27.2. The zero-error capacity of the contraction MAC satisfies

R1 ≤ h(1/3

R2 h p

) + (2/ − p)

≤ ( )

3 log 2 , (27.1)

(27.2)

for some p ∈ [0,1/2]. In particular, the point R1 =
3 , R2 1 is not achievable with zero error.2

Proof. Let C and D denote the zero-error codebooks of tw

=

o users. Then for each string bn , n

denote
U {anbn = ∶ aj ∈ {0,1} if bj = +, aj ∈ {2,3} if bj = −} .

∈ {+ −}

Then clearly for each bn we have
∣U ∣ ≤ 2d bbn

( n,D) ,

where d(bn,D) denotes the minimum Hamming distance from string bn to the set D. Then,

∣C ∣ ≤∑2d

bn

(bn,D) (27.3)

= 2
j
∑
n

j

=0

∣{bn ∶ d(bn,D) = j}∣ (27.4)
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For a given cardinality ∣D∣

= ( ) + ( )

the set that maximizes the above sum is the Hamming ball. Hence,
R2 h p O 1 implies

R2 ≤ max
∈[ ]

h(q) + (q − p) log 2
q p,1

= h(1/3) + (2/3 − p) log 2 .

27.7 Gaussian MAC

Perhaps the most important MAC is the Gaussian MAC. This is defined as

Y = A +B Z

Z ∼ N (

] ≤

0,1

E[A2 P

+

1

)

, E[B2 P2

Evaluating the mutual information, we see that the capacit

] ≤

y region is

I(A;Y ∣B) = I(
1

A;A +Z) ≤
2

log(1 + P1)

I(B;Y ∣A) = I(B;B +Z) ≤
1

1
2
≤ ( + P2

I
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(A,B;Y ) = h(Y ) − h(Z) ≤
1
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log(1 + P1 + P2)

A

B

Y

Z

R2

R1
1
2 log(1 + P1)

1
2 log(1 + P2)

1
2 log(1 + P1 + P2)

Where the region is Penta 0, P1 , 0, P2 . How do we achieve the rates in this region? We’ll
look at a few schemes.

(N ( ) N ( ))

1. TDMA: A and B switch off between transmitting at full rate and not transmitting at all. This
achieves any rate pair in the form

R1 =
1

λ
2

log(1 + P1), R2 = λ̄
1

log 1 P2
2

Which is the dotted line on the plot above. Clearly, there are

(

m

+

uch

)

better rates to be gained
by smarter schemes.

2. FDMA (OFDM): Dividing users into different frequency bands rather than time windows
gives an enormous advantage. Using frequency division, we can attain rates

R1 =
1

λ
2

log (1 +
P1

λ
) , R2 = λ̄

1

2
log (1 +

P2

λ̄
)
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In fact, these rates touch the boundary of the capacity region at its intersection with the
R1 = R2 line. The optimal rate occurs when the power at each transmitter makes the noise
look white:

P1

λ
=
P2

λ̄
Ô⇒ λ∗ =

P1

P1 + P2

While this touches the capacity region at one point, it doesn’t quite reach the corner points.
Note, however, that practical systems (e.g. cellular networks) typically employ power control
that ensures received powers Pi of all users are roughly equal. In this case (i.e. when P1 P2)
the point where FDMA

=

touches the capacity boundary is at a very desirable location of
symmetric rate R1 R2. This is one of the reasons why modern standards (e.g. LTE 4G)

=

do
not employ any specialized MAC-codes and use OFDM together with good single-user codes.

3. Rate Splitting/Successive Cancellation: To reach the corner points, we can use successive
cancellation, similar to the decoding schemes in the Adder and Multiplier MACs. We can use
rates:

R2 =
1

2
log(1 + P2)

R1 =
1

2
(log(1 + P1 + P2) − log(1 + P2)) =

1

2
log (1 +

P1

1 P2

The second expression suggests that A transmits at a rate for an AWGN

)

channel that has
power constraint P

+

1 and noise 1 + P2, i.e. the power used by B looks like noise to A.

A

B

Y

Z

Dec D1 Â

B̂Dec D2

E1

E2

Theorem 27.2. There exists a successive-cancellation code (i.e. E1,E2,D1,D2 ) that
achieves the corner points of the Gaussian MAC capacity region.

( )

Proof. Random coding: Bn ∼ N (

=

0, P )n. Since An2 now sees noise 1 + P2, there exists a code
for A with rate R 1

1 2 log(1 + P1/(1 + P2)).

This scheme (unlike the above two) can tolerate frame un-synchronization between the two
transmitters. This is because any chunk of length n has distribution 0, P n

2 . It has
generalizations to non-corner points and to arbitrary number of users. See

N

[R
(

U96]
)

for details.

27.8 MAC Peculiarities

Now that we’ve seen some nice properties and examples of MACs, we’ll look at cases where MACs
differ from the point to point channels we’ve seen so far.

1. Max probability of error average probability of error.

Theorem 27.3. C

=/

(max) =/ C
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Proof. The
≤ /

key observation for deterministic MAC is that C max C0 (zero error capacity)
when ε 1 2. This is because when any two strings can be confused,

( ) =
the maximum probability

of error

ˆmax
′
P[Ŵ1

m,m
=/ m ∪ W2 =/ m

′∣W1 =m,W2 =m
′

Must be larger than 1

]

/2.

For some of the channels we’ve seen

• Contraction MAC: C0 =/ C

• Multiplier MAC: C0 C

• Adder MAC: C0 C

=

=/ . For this channel, no one yet can show that C0,sum 3 2. The idea
is combinatorial in nature: produce two sets (Sidon sets) such that all pairwise sums
between the two do not overlap.

< /

2. Separation does not hold: In the point to point channel, through joint source channel coding
we saw that an optimal architecture is to do source coding then channel coding separately.
This doesn’t hold for the MAC. Take as a

=

simple example the
(

Adder
)

MAC with a correlated
source and bandwidth expansion factor ρ 1. Let the source S,T have joint distribution

1 3 1 3
PST 0

/

1
/

3

We encode Sn to channel input An and T

= [
/

]

is to not encoder at all; simply take Sj =

n to channel input Bn. The simplest possible scheme
Aj and Tj = Bj . Take the decoder

Yj = 0

Yj 1

Y 2

Ô⇒

ˆ ˆS T

= Ô⇒

0 0

0 1

j 1 1

Which gives P[Ŝn ˆSn, Tn Tn 1, since

=

w

Ô

e

⇒

are able to take advantage of the zero entry in
joint distribution of

=

our correlated

with a

=

source.

Can we achieve this separated

] =

source? Amazingly, even though the above scheme is so
simple, we can’t! The compressors in the separated architecture operate in the Slepian Wolf
region

⎧⎪⎪⎪⎪
R1

R2

R

≥

H

(

⎨

H S∣T

H

)

≥ (T ∣S

1 R2

)

S,T log 3

Hence th
≤

e sum rate for compression

⎪⎪⎪⎪⎩ +

must

≥

be

( ) =

≥

/

log 3, while the sum rate for the Adder MAC
must be 3 2, so these two regions do not overlap, hence we can not operate at a bandwidth
expansion factor of 1 for this source and channel.
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Slepian Wolf

1

1

1/2

1/2

3/2

log 3

R2

Adder MAC
R1

3. Linear codes beat generic ones: Consider a BSC-MAC and suppose that two users A and
B have independet k-bit messages W1,W2 ∈

+

Fk2.
/

Suppose the receiver is only interested in
estimating W1 W2. What is the largest ratio k n? Clearly, separation can achieve

k/n ≈
1

log 2 h δ
2

by simply creating a scheme in which both

(

W1 and

−

W

(

2

))

are estimated and then their sum is
computed.

A more clever solution is however to encode

An = G

Bn

Y n A

⋅

= G
n

⋅

W1 ,

W2 ,

Bn Zn G W W2 Zn1 .

where G is a generating matrix

=

of a

+

good

+

k-to-

=

n linear

( +

code.

) +

Then, provided that

k n log 2 h δ o n

the sum W1 W

< ( − ( )) + ( )

+ 2 is decodable (see Theorem 16.2). Hence even for a simple BSC-MAC there
exist clever ways to exceed MAC capacity for certain scenarios. Note that this “distributed
computation” can also be viewed as lossy source coding with a distortion metric that is only

ˆ ˆsensitive to discrepancy between W1 W2 and W1 W2.

4. Dispersion is unknown: We have seen

+

that for the

+

point-to-point channel, not only we know
the capacity, but the next-order terms (see Theorem 20.2). For the MAC-channel only the
capacity is known. In fact, let us define

Rsum
∗ (n, ε) ≜ sup{R1 +R2 ∶ (R1,R2) ∈R

∗(n, ε .

Now,
( /

tak
)

e Adder-MAC as an example. A simple exercise in random-co

)}

ding with PA PB
Ber 1 2 shows

=

Rsum
∗ (

3

=

n, ε) ≥
2

log 2 −

√
1

4n
Q−1(ε) log 2 +O(

logn
.

n

In the converse direction the situation is rather sad. In fact the best

)

bound we have is only
slightly better than the Fano’s inequality [?]. Namely for each ε > 0 there is a constant Kε > 0
such that

Rsum
∗ (n, ε) ≤

3

2
log 2 +Kε

logn
√
n
.
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So
→

it
∞

is not even known if sum-rate approaches sum-capacity from above or from below as
n ! What is even more surprising, is that the dependence of

=

the residual term on ε is not
clear at all. In fact, despite the decades of attempts, even for ε 0 the best known bound to
date is just the Fano’s inequality(!)

Rsum
∗ (n,0) ≤

3

2
.
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