
§ 3. Sufficient statistic. Continuity of divergence and mutual information

3.1 Sufficient statistics and data-processing

Definition 3.1 (Sufficient Statistic). Let

• P θX be a collection of distributions of X parameterized by θ

• PT ∣X be some probability kernel. Let P θT ≜ PT ∣X ○ P θX be the induced distribution on T for
each θ.

We say that T is a sufficient statistic (s.s.) of X for
=

θ if there exists a transition probability kernel
PX ∣T so that P θXPT ∣X P θTPX

Note

∣T . (I.e.: PX ∣T can be chosen to not depend on θ).

:

• Know T , can forget X (T contains all the information that is sufficient to make inference
about θ)

• Obviously any one-to-one transformation of X is sufficient. Therefore the interesting case is
when T is a low-dimensional recap of X (dimensionality reduction)

• θ need not be a random variable (the definition does not involve any distribution on θ)

Theorem 3.1. Let θ →X → T . Then the following are equivalent

1. T is a s.s. of X for θ.

2. ∀Pθ, θ → T →X.

3.

4.

∀Pθ, I(θ;X ∣T ) = 0.

∀Pθ, I(θ;X) = I(θ;T

Theorem

), i.e., data processing inequality for M.I. holds with equality.

3.2 (Fisher’s factorization criterion). For all θ ∈ Θ, let P θX have a density pθ with respect
to a measure µ (e.g., discrete – pmf, continuous – pdf). Let T = T (X) be a deterministic function
of X. Then T is a s.s. of X for θ iff

pθ(x) = gθ(T (x))h(x

for some measurable functions gθ and h, θ Θ.

)
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⇒
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“⇐”: Suppose the factorization holds. Then

Pθ(X = x∣T = t) =
pθ(x)

∑x 1{T (x)=t}pθ(x)
=

gθ(t)h(x)

∑x 1{T (x)=t}gθ(t)h(x)
=

h(x)

∑x 1{T (x)=t}h(x)
,

free of θ.

Example:

1. Normal mean model. Let θ R indep.
and observations Xi θ,1 , i n . Then the sample

¯mean X = 1
∈ ∼ N ( ) ∈ [ ]

ofn ∑jXj is a s.s. Xn for θ.

Verify: P θXn factorizes.

i.i.d.
2. Coin flips. Let Bi ∼ Bern(θ . Then n

i 1Bi is a s.s. of Bn for θ.

i.i.d.
3. Uniform distribution. Let U . n

i

)

uniform

∑ =

0, θ Then maxi n Ui is a s.s. of U for θ.

Example: Binary hypothesis testing

∼

. θ 0,

[

1 . Giv

]

en θ 0 or

∈[

1,

]

X PX or QX . Then Y – the
output of PY ∣X – is a s.s. of X for θ iff

=

D
{ }

Q

∣

(PX ∣Y X Y PY 0, i.e., PX Y QX Y holds PY -a.s.
Indeed, the latter means that for kernel QX Y we hav

∣

= ∼

∥

e
∣ ) = ∣ = ∣

PXPY ∣X = PYQX ∣Y and QXPY ∣X = QYQX

which is precisely the definition of s.s. when θ 0, 1 . This example explains

∣Y ,

∈ { } condition for equality
in the data-processing for divergence:

X Y

P X

Q Y

P Y

P Y | X

Q X

Then assuming D(PY ∥QY

Q

) < we have:

D(PX

∞

∥ X) =D(PY ∥QY

Proof: Let QXY QXPY X , PXY PXP

)

Y X ,

⇐

then

⇒ Y – s.s. for testing PX vs. QX

=

D

∣

(PXY

= ∣

∥QXY ) = PY ∣ Q ∣ )+ ( ∥ )D
´

D

( X∥
¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹

Y

¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
∣X

¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
PX

¶
D PX QX

= (
=0

PX ∣Y ∥QX Y

Y

∣ ∣PY

D PY Q

) +D(PY ∥QY )

with equality iff D(PX ∣Y ∥QX ∣Y ∣PY

≥ ( ∥ )

) = 0, which is equivalent to Y being a s.s. for testing PX vs QX
as desired.
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3.2 Geometric interpretation of mutual information

Mutual information as “weighted distance”:

I(X;Y ) =D(PY ∣X∥PY D
x

Q

∣PX) = (PY ∣X=x∥PY )PX(x

Theorem 3.3 (Golden formula).

)

∀ Y such that D

∑

PY QY

I(X;Y ) =D(PY ∣X Q

( ∥ ) <∞

∥ Y ∣PX

Proof. For discrete case: I X;Y E P
log Y XQY

) −D(PY ∥QY )

( ) = ∣

PY QY
, group PY ∣X and QY .

Corollary 3.1 (mutual information as center of gravity).

I X;Y minD PY Q PX ,
Q

∣X

achieved at Q

( ) = ( ∥ ∣ )

= PY .

Note: This representation is useful to bound mutual information from above.

Theorem 3.4 (mutual information as distance to product distributions).

I(X;Y ) = min D PXY QXQY
QX ,QY

P Q QProof. I(X;Y ) = E log XY X Y

( ∥ )

PXPY QXQY
, group PXY andQXQY and bound marginal divergencesD(PX∥QX)

and D(PY ∥QY ) by zero.

Note: Generalization to conditional mutual information.

I(X;Z ∣Y ) = min
∶ → →

D(PXY Z∥QXY Z
QXY Z X Y Z

Proof. By chain rule,

)

D(PXY Z∥

= ( ∥

QXQY XQZ∣Y

D PXY Z PXPY

∣ )

∣XPZ∣Y ) +D

D

(PX∥QX) +D

PXY Z PY PX Y PZ Y . . .

(P ∥ PZ∣Y ∥QZ∣Y ∣ Y )

=

Y ∣X QY ∣X ∣PX) +D( P

=D
´

(

(
¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
P
¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
XZ Y

∥

∥PX Y P

∣

Z Y ∣

∣

+
¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹

Y

)

∣ ∣ ∣ P

+

I

)
¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

. . .

(X;Z ∣Y )

Interpretation: The most general graphical model for the triplet X,Y,Z is a 3-clique. What
is the information flow on the edge X Z? To answer, notice that
possible joint distributions to a Markov chain X Y Z. Thus, it

(

removing
)

this edge restricts
is natural to ask what is the

minimum distance between a given PX

→

,Y,Z and the set of all distributions QX,Y,Z satisfying the
Markov chain constraint. By the above calculation,

→

optimal

→

QX,Y,Z =

( ∣ )

PY PX Y PZ Y and hence the
distance
→

is I X;Z Y . It is natural to take this number as the information
∣

flowing
∣

on the edge
X Z.
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3.3 Variational characterizations of divergence:
Donsker-Varadhan

Why variational characterization (sup- or inf-representation): F (x

1. Regularity, e.g., recall

) = supλ∈Λ fλ(x)

a) Pointwise supremum of convex functions is convex

b) Pointwise supremum of lower semicontinuous (lsc) functions is lsc

2. Give bounds by choosing a (suboptimal) λ

Theorem 3.5 (Donsk
∶ X →

er-Varadhan). Let P,Q
set of functions f R such that EQ

X C

[exp
expectation EP f X exists and furthermore

{

b
(

e pr
)}]

obability me
f X < ∞

asur
. If D(P ∥

es on
Q) < ∞

and let denote the

[ ( )]

then for every f ∈ C

D(P

Pro

∥Q) = sup
f∈C

EP [f(X)] − logEQ

of. “ ”: take f log dP

[exp{f(X)}] . (3.1)

≤ = dQ .

“≥”: Fix f ∈ C and define a probability measure Qf (tilted version of Q) via Qf(dx) ≜
exp{f(x)}Q(dx)
∫X exp{f( )} ,

x Q(dx) or equivalently,

Qf(dx) = exp{f

Then,

(x) −Zf}Q(dx) , Zf

obviously Qf Q and we have

≜ logEQ[exp{f(X)}] .

EP

≪

[f(X)] −Zf = EP [
dQf

log
dQ

] = EP [log
dPdQf

dQdP
] =D(P ∥Q) −D(P ∥Qf) ≤D(P ∥Q) .

Notes:

1. What is Donsker-Varadhan good for? By setting f x ε g x with ε 1 and linearizing exp
and log we can see that when D P Q is small, exp

(

ectations
) = ⋅ (

under
)

P can
≪

be approximated by
expectations over Q (change of measure): EP g X EQ g X . This holds for all functions
g with finite exponential momen

(

t under

∥ )

Q. T
[

otal
(

v
)]

ari
≈

ation
[

distance
( )]

provides a similar bound,
but for a narrower class of bounded functions:

∣EP g

formally

(X

2. More , inequality EP

[

f X

)] −EQ

log

[g

E

(X ≤ ∥g

Q

)]∣

exp f X

∥∞TV(P,Q) .

useful estimating
EP [f(

D
X)]

P Q is in
for complicated distribution P (e.g. over large-dimensional vector Xn with lots of

weak inter-coordinate dependencies)

[ ( )]

by

≤

making

[

a smart

(

c

)]

hoice

+

of

(

Q

∥

(e.g.

)

with iid components).

3. In the next lecture we will show that P D P Q is convex. A general method of obtaining
variational formulas like (3.1) is by Young-Fenchel inequality. Indeed, (3.1) is exactly this
inequality since the Fenchel-Legendre conjugate

↦ ( ∥

of

)

D(⋅∥Q) is given by a convex map f Zf .

Theorem
H

3.6 (Weak lower-semicontinuity of divergence). Let X be a metric space with Bor

↦

el
σ-algebra . If Pn and Qn converge weakly (in distribution) to P , Q, then

D(P ∥Q) ≤ lim inf
n→∞

D(Pn Qn
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Proof. First method: On a metric space bounded continuous functions ( b) are dense in the set
of all integrable functions. Then in Donsk

X

er-Varadhan (3.1) we can replace
C

by b to get

D(Pn∥Qn) = sup
∈C

EPn f X logEQn exp f X .
f

C C

b

Recall Pn → P weakly if and only if EP f

[ ( )] − [

f

{ (

n (X) EP f X for all b.

)}]

Taking the limit concludes
the proof.

Second metho
)

d (less m Let A
( +

ysterious): b

→

e the algebra

( )

of Borel

∈ C

sets E whose boundary has
zero P Q measure, i.e.

E P Q ∂E 0 .

By the property of weak convergence

A = {

Pn

∈

and

H ∶

Q

(

n

+

conv

)(

erge

)

p

=

oin

}

twise on . Thus by (3.8) we have

D(PA∥Q D

in

A) ≤ lim
n→∞

(Pn,

A

If we show is P Q -dense , we are done by (3.7

A

)

∥Qn,

. To

A

get

)

an idea, consider R. Then
open sets are
by open interv

A (

(P
+ ) H

+Q)

(

-dense
)

in H
+

(since finite measures are regular), while the algebra
X =

F generated

∈ X (

als
) +

is
(

P
) >

Q -dense in the open sets. Since there are at most
(

coun
)

tably many points
a with P a Q a 0, we may further approximate each interval a, b whose boundary has
non-zero P Q measure by a slightly larger interval from .

i.i.d.
Note: In

(

general,

+ )

D(P ∥Q) is

∑

not continuous in either P or

A

=

Q. Example: Let B1, . . . ,Bn 1
n
i=

D
equiprobably. Then S 1

n √
n 1Bi

{± }

Ð→ 0,1 . But D PSn 0,1

∼

discrete cont’s

this is an example for strict inequality in

N (

(3.2).

) (
°

∥N
´¹¹¹¹¹¹¹¹¹¹

(
¸¹¹¹¹¹¹¹¹¹¹¹¶

)) = ∞ for all n. Note that

Note: Why do we care about continuity of information measures? Let’s take divergence as an
example.

1. Computation. For complicated P and Q direct computation of D(P ∥Q) might be hard.
Instead, one may want to discretize them then let the computer compute. Question: Is this
procedure stable, i.e., as the quantization becomes finer, does this procedure guarantee to
converge to the true value? Yes! Continuity w.r.t. discretization is guaranteed by the next
theorem.

2. Estimating information measures. In many statistical setups, oftentimes we do not know P
or Q, if we estimate the distribution from data (e.g., estimate P by empirical distribution
ˆ ˆPn from n samples) and then plug in, does D(Pn∥Q) provide a good estimator for D P Q ?

ˆWell, note from the first example that this is a bad idea if Q is continuous, since D Pn Q
for n. In fact, if one convolves the empirical distribution with a tiny bit of, say, Gaussian

( ∥ )

distribution, then it will always have a density. If we allow the variance of the Gaussian

( ∥ ) =∞

to
vanish with n appropriately, we will have convergence. This leads to the idea of kernel density
estimators. All these need regularity properties of divergence.

3.4 Variational characterizations of divergence:
Gelfand-Yaglom-Perez

The point of the following theorem is that divergence on general alphabets can be defined via
divergence on finite alphabets and discretization. Moreover, as the quantization becomes finer, we
approach the value of divergence.
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Theorem
F

3.7 (Gelfand-Yaglom-Perez). Let P,Q be two probability measures on with σ-algebra
. Then

i
D(P ∥Q) =

n P E

{
sup

}
∑
=
P [Ei] log

[ ]
,

X

(3.3)
E1,...,En i 1 Q Ei

where the

=

supremum

=∞

is over all finite -measurable partitions: n
j 1Ej ,Ej Ei , and

0 log 1 0 and log 1 per our usual convention.

[ ]

0 0

F ⋃ =

Remark 3.1. This theorem, in particular, allows us to prove all general iden

=

tities

X

and

∩

inequalities

= ∅

for the cases of discrete random variables.

Proof. “≥”: Fix a finite partition E1, . . .En. Define a function (quantizer/discretizer) f
1, . . . , n as follows: For any x, let f x denote the index j of the set Ej to which X belongs.
X be distributed according to either P or Q and set Y f X . Applying data processing inequ

∶ X

for

}

yields

) Let
→

{

= ( ) ality
divergence

(

D(P ∥Q) = ( ∥ )

≥

D PX QX

D(PY QY (3.4)

P Ei
P E

∥

i log

)

i Q

[

Ei

]
.

“≤”: To show D is

=

(P Q indeed achiev

∑

able,

[

fir

]

st note

[

that

]

if P Q, then by definition,
there exists

( ∥

B

) =

suc

∞

h

=

that
∥

Q
)

B) = 0 < P (B). Choosing the partition E
≪/

( 1 = =

∑ [ ]
[ ]

≪

B and E2 Bc, we

have D 2
i=

P E
P Q 1 P Ei log [

i

] . In the sequel we assume that P Q, hence the likeli-Q Ei

hood ratio dP is well-defined. Let us define a partition of by partitioning the range of log dP :dQ dQ

E x log dP j n dP

/

1 dP
j ε 2, j n 2 , j 1, . . . , n 1 and En x log 1 n 2 or logdQ dQ dQ

P E
n 2

X

= { ∶ ∈ ⋅ [ − / + − / )} = − = { ∶ < − / ≥

n−

)}.1Note dP j n 1 dP

∑ =
1 εP (E ) +

that

(

on

)

Ej , log ε j 1 n 2 log ε. Hence E dP logdQ Q Ej j 1 j dQ
P

P E log
(
(
Ej ε n

(

j

≤
)

P Ej
j

( + −

=
)

≤

(

Q
) 1

j 1

∑ )
(

Ej

≥

) + ∑

∫

j 1 εP (Ej) + P (Ej) log Q
P

) ≤ ) + =

n E

− / (

j dP 1

(
PE

)
En

j

∑ ∫ ≤

words, j=1 P Ej log c dP log ε P En log . Let nQ(Ej En dQ P E

(

n

) + ( )

such that nε (e.g., ε 1 ).

)

noting
εn

)
The pro

−

of

−

is

(

complete b
)

dP log dP

(
y that

1 dP log dP

√
n

D P Q .

→

log

∞

P (En) . In other

and ε → 0 be

∫ {∣ log dP εn dQ
dQ

→ ∞ = / ( ) →

∣≤ } ÐÐ
↑
Ð
∞
→ ∫ = ( ∥

P En 0 and

dQ )

3.5 Continuity of divergence. Dependence on σ-algebra.

For finite alphabet X it

X

is easy to establish continuity of

X

entropy and divergence:

Proposition 3.1. Let be finite, fix distribution Q on with Q(x) > 0 for all x

P

∈ X . Then map

D P Q

is continuous. In particular,

↦ ( ∥ )

P ↦H(P ) (3.5)

is continuous.

(
1Intuition

∥
:
∣

The
)

main idea is to note that the loss in the inequality (3.4) is in fact D PX QX D PY QY
D PX Y QX Y PY , and we want to show that the conditional divergence is small. Note that PX Y j PX X Ej

and
dP Q E

Q = X
X

∣

Q Y j dP

( ∥ ) = ( ∥ ) +

Y j X

∣

X Ej
. Hence

dQX j
=
dQ

∣ = ∣ ∈

∣

Y

=

P

( )

∣ = ∣ ∈
∣ =

(

j

)
1Ej . Once we partitioned the likelihood ratio sufficiently

Ej

=
finely, these

two conditional distribution are very close to each other.
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Warning: Divergence is never continuous in the pair, even for finite alphabets: d( 1 ∥2−n 0.n

Proof. Notice that
P x

)→/

D P Q P x log
x Q x

and each term is a continuous function

(

of

∥

P

) =

x

∑

.

( )
( )

( )

Our next goal is to study continuity prop

( )

erties of divergence for general alphabets. First,
ho

(

wev
∥

er,
)

we need to understand dependence on the σ-algebra of the space. Indeed, divergence
D P Q implicitly dep
the dependence on

F (X F)

We want to understand

F

ends on the σ-algebra defining the measurable space , . To emphasize
we will write

D PF QF

define D P Q

( ∥ )

this we take (
F

(

.

F
3.3)

∥ ) F

we do not

(

ha

∥

ve Radon-Nik

)

how does D P
for any algebra of sets

F

as the definition. Note th
odym theorem

F

QF depend upon refining . Notice that we can even
and two positive additive set-functions P For

at when F
,Q on .

is not a σ-algebra or P,Q are not σ-additiv
F

e,
and thus our original definition is not applicable.

Corollary 3.2 (Measure-theoretic properties of divergence). Let P,Q be probability measures on
the measurable space

• (Monotonicity)

(

If

X ,H). Assume all algebras below are sub-algebras of H. Then:

F ⊆ G then

D P Q D P Q . (3.6)

• Let F1 ⊆ F2 . . . be an increasing sequenc

( F∥

e of

F)

algebr

≤ (

as

G

and

∥ G)

let F = ⋃n

D

Fn be their limit, then

P n Q n D P Q .

• If F is (P +Q)-dense in

( F ∥ F )↗ ( F∥ F)

G then2

D P Q D P Q . (3.7)

• (Monotone convergence theorem) Let

( F

1

∥ F)

2 .

=

F

. .

(

e

∥ G)

F ⊆ F

F

b an

G

= ⋁

increasing sequence of algebras and let

n n be the σ-algebra generated by them, then

D(PFn∥QFn)↗D(P

In

F∥QF) .

particular,
D PX∞ QX∞ lim D PXn QXn .

n

• (Lower-semicontinuity of divergenc

(

e)

∥ ) =
→∞

( ∥

∥

If Pn →

( ) ≤

P and Qn Q pointwise

)

on the algebra , then3

D PF QF lim infD Pn, Qn, . (3.8)
n

→ F

Proof. Straightforward applications of (3.3) and the

→∞
( F∥ F

F

observation that

)

}

any is µ-dense in
the σ-algebra σ{

algebra
it generates, for any µ on , .4

Note: Pointwise convergence on
distribution (aka “w

H is weaker than convergence in total variation and

F

stronger than
convergence in eak convergence”).

(X H)

However, (3.8) can be extended to this mode
of convergence (see Theorem 3.6).

2Note: is µ-dense in if E , ε 0 E s.t. µ E∆E ε.
3Pn P pointwise on some algebra if E

′

Pn E P

′

E .
4This ma

F

y be shown by

G

transfinite

∀ ∈ G

induction:

> ∃ ∈ F [ ] ≤
→ F ∀ ∈

to
F ∶

each
[ ]→ [ ]

F ′ < {F} = F
ordinal ω associate an algebra ω generated by monotone

limits
F

of sets from ω′ with
F
ω ω. Then σ ω0 , where ω0 is the first ordinal for which Fω is a monotone class.

But is µ-dense in each ω by transfinite induction.

F

37



3.6 Variational characterizations and continuity of mutual
information

Again, similarly to Proposition 3.1, it is easy to show that in the case of finite alphabets mutual
information is continuous

Proposition 3.2. Let X

in the distribution:

and Y be finite alphabets. Then

PX,Y ↦ I(X;Y

is continuous.

)

Proof. Apply representation

I(X;Y ) =H(X) +H(Y

and (3.5).

) −H(X,Y )

Further properties of mutual information follow from I(X;Y
e.g.

) D
ing properties of divergence,

= (PXY ∥PXPY ) and correspond-

1.
I(X;Y ) = ¯supE[f(X,Y logE exp f X,Y ,

f

¯where Y is a copy of Y , independent of X and

)]

suprem

− [

um is

{

o

(

ver b

)}]

ounded, or even bounded
continuous functions.

2. If (
d

Xn, Yn)→ (X,Y ) converge in distribution, then

I(X;Y ) ≤ lim inf
n→∞

I(Xn;Yn) . (3.9)

d
Go
(

od example
) =

of strict inequality: X 1
n Yn Z. In this case Xn, Yn 0,0 butn

I Xn;Yn H Z
= = ( ) → (

( ) > 0
)

= I(0; 0).

3.

(
PXY Ei Fj

I X;Y sup PXY Ei Fj log ,
Ei Fj i,j PX E

[

i PY

×

Fj

]

where supremum is over finite

) =
{

partitions

}×{ }
∑

of spaces

[ × ]
[ ] [ ]

X and Y.5

4. (Monotone convergence):

I(X∞;Y lim I Xn;Y (3.10)
n

I X

) =
→∞

(

( ∞;Y ∞) = lim
→∞

I(Xn;Y

)

n (3.11)
n

This implies that all mutual information between two-processes

)

X and Y is contained in
their finite-dimensional projections, leaving nothing for the tail σ-algebra.

∞ ∞

5To prove this from (3.3) one needs to notice that algebra of measurable rectangles is dense in the product
σ-algebra.
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