5.1 Extremization of mutual information for memoryless sources and channels

Theorem 5.1. (Joint M.I. vs. marginal M.I.)
(1) If $P_{Y^{n} \mid X^{n}}=\prod P_{Y_{i} \mid X_{i}}$ then

$$
\begin{equation*}
I\left(X^{n} ; Y^{n}\right) \leq \sum I\left(X_{i} ; Y_{i}\right) \tag{5.1}
\end{equation*}
$$

with equality iff $P_{Y^{n}}=\Pi P_{Y_{i}}$. Consequently,

$$
\max _{P_{X^{n}}} I\left(X^{n} ; Y^{n}\right)=\sum_{i=1}^{n} \max _{P_{X_{i}}} I\left(X_{i} ; Y_{i}\right)
$$

(2) If $X_{1} \Perp \ldots \Perp X_{n}$ then

$$
\begin{equation*}
I\left(X^{n} ; Y^{n}\right) \geq \sum I\left(X_{i} ; Y_{i}\right) \tag{5.2}
\end{equation*}
$$

with equality iff $P_{X^{n} \mid Y^{n}}=\Pi P_{X_{i} \mid Y_{i}} P_{Y^{n} \text {-almost surely }}{ }^{1}$. Consequently,

$$
\min _{P_{Y^{n} \mid X^{n}}} I\left(X^{n} ; Y^{n}\right)=\sum_{i=1}^{n} \min _{P_{Y_{i} \mid X_{i}}} I\left(X_{i} ; Y_{i}\right) .
$$

Proof. (1) Use $I\left(X^{n} ; Y^{n}\right)-\sum I\left(X_{j} ; Y_{j}\right)=D\left(P_{Y^{n} \mid X^{n}} \| \Pi P_{Y_{i} \mid X_{i}} \mid P_{X^{n}}\right)-D\left(P_{Y^{n}} \| \Pi P_{Y_{i}}\right)$
(2) Reverse the role of X and $Y: I\left(X^{n} ; Y^{n}\right)-\sum I\left(X_{j} ; Y_{j}\right)=D\left(P_{X^{n} \mid Y^{n}} \| \Pi P_{X_{i} \mid Y_{i}} \mid P_{Y^{n}}\right)-D\left(P_{X^{n}} \| \Pi P_{X_{i}}\right)$

Note: The moral of this result is that

1. For product channel, the MI-maximizing input is a product distribution
2. For product source, the MI-minimizing channel is a product channel

This type of result is often known as single-letterization in information theory, which tremendously simplifies the optimization problem over a large-dimensional (multi-letter) problem to a scalar (singleletter) problem. For example, in the simplest case where X^{n}, Y^{n} are binary vectors, optimizing $I\left(X^{n} ; Y^{n}\right)$ over $P_{X^{n}}$ and $P_{Y^{n} \mid X^{n}}$ entails optimizing over 2^{n}-dimensional vectors and $2^{n} \times 2^{n}$ matrices, whereas optimizing each $I\left(X_{i} ; Y_{i}\right)$ individually is easy.
Example:

[^0]1. (5.1) fails for non-product channels. $X_{1} \Perp X_{2} \sim \operatorname{Bern}(1 / 2)$ on $\{0,1\}=\mathbb{F}_{2}$:

$$
\begin{aligned}
Y_{1} & =X_{1}+X_{2} \\
Y_{2} & =X_{1} \\
I\left(X_{1} ; Y_{1}\right) & =I\left(X_{2} ; Y_{2}\right)=0 \text { but } I\left(X^{2} ; Y^{2}\right)=2 \mathrm{bits}
\end{aligned}
$$

2. Strict inequality in (5.1).

$$
\begin{aligned}
\forall k Y_{k}=X_{k}=U \sim \operatorname{Bern}(1 / 2) \Rightarrow & I\left(X_{k} ; Y_{k}\right)=1 \\
& I\left(X^{n} ; Y^{n}\right)=1<\sum I\left(X_{k} ; Y_{k}\right)
\end{aligned}
$$

3. Strict inequality in (5.2). $X_{1} \Perp \ldots \Perp X_{n}$

$$
\begin{aligned}
Y_{1}=X_{2}, Y_{2}=X_{3}, \ldots, Y_{n}=X_{1} \Rightarrow & I\left(X_{k} ; Y_{k}\right)=0 \\
& I\left(X^{n} ; Y^{n}\right)=\sum H\left(X_{i}\right)>0=\sum I\left(X_{k} ; Y_{k}\right)
\end{aligned}
$$

5.2* Gaussian capacity via orthogonal symmetry

Multi-dimensional case (WLOG assume $X_{1} \Perp \ldots \Perp X_{n}$ iid), for a memoryless channel:

$$
\max _{\mathbb{E}\left[\Sigma X_{k}^{2}\right] \leq n P} I\left(X^{n} ; X^{n}+Z^{n}\right) \leq \max _{\mathbb{E}\left[\Sigma X_{k}^{2}\right] \leq n P} \sum_{k=1}^{n} I\left(X_{k} ; X_{k}+Z_{k}\right)
$$

Given a distribution $P_{X_{1}} \cdots P_{X_{n}}$ satisfying the constraint, form the "average of marginals" distribution $\bar{P}_{X}=\frac{1}{n} \sum_{k=1}^{n} P_{X_{k}}$, which also satisfies the single letter constraint $\mathbb{E}\left[X^{2}\right]=\frac{1}{n} \sum_{k=1}^{n} \mathbb{E}\left[X_{k}^{2}\right] \leq P$. Then from concavity in P_{X} of $I\left(P_{X}, P_{Y \mid X}\right)$

$$
I\left(\bar{P}_{X} ; P_{Y \mid X}\right) \geq \frac{1}{n} \sum_{k=1}^{n} I\left(P_{X_{k}}, P_{Y \mid X}\right)
$$

So \bar{P}_{X} gives the same or better MI, which shows that the extremization above ought to have the form $n C(P)$ where $C(P)$ is the single letter capacity. Now suppose $Y^{n}=X^{n}+Z_{G}^{n}$ where $Z_{G}^{n} \sim \mathcal{N}\left(0, \mathbf{I}_{n}\right)$. Since an isotropic Gaussian is rotationally symmetric, for any orthogonal transformation $U \in O(n)$, the additive noise has the same distribution $Z_{G}^{n} \sim U Z_{G}^{n}$, so that $P_{U Y^{n} \mid U X^{n}}=P_{Y^{n} \mid X^{n}}$, and

$$
I\left(P_{X^{n}}, P_{Y^{n} \mid X^{n}}\right)=I\left(P_{U X^{n}}, P_{U Y^{n} \mid U X^{n}}\right)=I\left(P_{U X^{n}}, P_{Y^{n} \mid X^{n}}\right)
$$

From the "average of marginal" argument above, averaging over many rotations of X^{n} can only make the mutual information larger. Therefore, the optimal input distribution $P_{X^{n}}$ can be chosen to be invariant under orthogonal transformations. Consequently, the (unique!) capacity achieving output distribution $P_{Y^{n}}^{*}$ must be rotationally invariant. Furthermore, from the conditions for equality in (5.1) we conclude that $P_{Y^{n}}^{*}$ must have independent components. Since the only product distribution satisfying the power constraints and having rotational symmetry is an isotropic Gaussian, we conclude that $P_{Y^{n}}=\left(P_{Y}^{*}\right)^{n}$ and $P_{Y}^{*}=\mathcal{N}\left(0, P \mathbf{I}_{n}\right)$.

For the other direction in the Gaussian saddle point problem:

$$
\min _{P_{N}: \mathbb{E}\left[N^{2}\right]=1} I\left(X_{G} ; X_{G}+N\right)
$$

This uses the same trick, except here the input distribution is automatically invariant under orthogonal transformations.

5.3 Information measures and probability of error

Let W be a random variable and \hat{W} be our prediction. There are three types of problems:

1. Random guessing: $W \hat{W}$.
2. Guessing with data: $W \rightarrow X \rightarrow \hat{W}$.
3. Guessing with noisy data: $W \rightarrow X \rightarrow Y \rightarrow \hat{W}$.

We want to draw converse statements, e.g., if the uncertainty of W is high or if the information provided by the data is too little, then it is difficult to guess the value of W.
Theorem 5.2. Let $|\mathcal{X}|=M<\infty$ and $P_{\max } \triangleq \max _{x \in \mathcal{X}} P_{X}(x)$. Then

$$
\begin{equation*}
H(X) \leq\left(1-P_{\max }\right) \log (M-1)+h\left(P_{\max }\right) \triangleq F_{M}\left(P_{\max }\right), \tag{5.3}
\end{equation*}
$$

with equality iff $P_{X}=(P_{\max }, \underbrace{\frac{1-P_{\max }}{M-1}, \ldots, \frac{1-P_{\max }}{M-1}}_{M-1})$.
Proof. First proof: Write RHS-LHS as a divergence. Let $P=\left(P_{\max }, P_{2}, \ldots, P_{M}\right)$ and introduce $Q=\left(P_{\max }, \frac{1-P_{\max }}{M-1}, \ldots, \frac{1-P_{\max }}{M-1}\right)$. Then RHS-LHS $=D(P \| Q) \geq 0$, with inequality iff $P=Q$.

Second proof: Given any $P=\left(P_{\max }, P_{2}, \ldots, P_{M}\right)$, apply a random permutation π to the last $M-1$ atoms to obtain the distribution P_{π}. Then averaging P_{π} over all permutation π gives Q. Then use concavity of entropy or "conditioning reduces entropy": $H(Q) \geq H\left(P_{\pi} \mid \pi\right)=H(P)$.

Third proof: Directly solve the convex optimization $\max \left\{H(P): p_{i} \leq P_{\max }, i=1, \ldots, M\right\}$.
Fourth proof: Data processing inequality. Later.
Note: Similar to Shannon entropy $H, P_{\max }$ is also a reasonable measure for randomness of P. In fact, $\log \frac{1}{P_{\max }}$ is known as the Rényi entropy of order ∞, denoted by $H_{\infty}(P)$. Note that $H_{\infty}(P)=\log M$ iff P is uniform; $H_{\infty}(P)=0$ iff P is a point mass.
Note: The function F_{M} on the RHS of (5.3) looks like

which is concave with maximum $\log M$ at maximizer $1 / M$, but not monotone. However, $P_{\max } \geq \frac{1}{M}$ and F_{M} is decreasing on $\left[\frac{1}{M}, 1\right]$. Therefore (5.3) gives a lower bound on $P_{\max }$ in terms of entropy.

Interpretation: Suppose one is trying to guess the value of X without any information. Then the best bet is obviously the most likely outcome, i.e., the maximal probability of success among all estimators is

$$
\begin{equation*}
\max _{\hat{X} \Perp X} \mathbb{P}[X=\hat{X}]=P_{\max } \tag{5.4}
\end{equation*}
$$

Thus (5.3) means: It is hard to predict something of large entropy.

Conceptual question: Is it true (for every predictor $\hat{X} \Perp X$) that

$$
\begin{equation*}
H(X) \leq F_{M}(\mathbb{P}[X=\hat{X}]) ? \tag{5.5}
\end{equation*}
$$

This is not obvious from (5.3) and (5.4) since $p \mapsto F_{M}(p)$ is not monotone. To show (5.5) consider the data processor $(X, \hat{X}) \mapsto \mathbf{1}_{\{X=\hat{X}\}}$:

$$
\begin{aligned}
& P_{X \hat{X}}=P_{X} P_{\hat{X}} \\
& Q_{X \hat{X}}=U_{X} P_{\hat{X}}
\end{aligned} \Rightarrow \begin{aligned}
\mathbb{P}[X=\hat{X}] \triangleq P_{S} \\
\mathbb{Q}[X=\hat{X}]=\frac{1}{M}
\end{aligned} \Rightarrow \begin{array}{ll}
d\left(P_{S} \| \frac{1}{M}\right) & \leq D\left(P_{X \hat{X}} \| Q_{X \hat{X}}\right) \\
& =\log M-H(X)
\end{array}
$$

where inequality follows by the data-processing for divergence.
The benefit of this proof is that it trivially generalizes to (possibly randomized) estimators $\hat{X}(Y)$, which depend on some observation Y correlated with X :

Theorem 5.3 (Fano's inequality). Let $|\mathcal{X}|=M<\infty$ and $X \rightarrow Y \rightarrow \hat{X}$. Then

$$
\begin{equation*}
H(X \mid Y) \leq F_{M}(\mathbb{P}[X=\hat{X}(Y)])=\mathbb{P}[X \neq \hat{X}] \log (M-1)+h(\mathbb{P}[X \neq \hat{X}]) . \tag{5.6}
\end{equation*}
$$

Thus, if in addition X is uniform, then

$$
\begin{equation*}
I(X ; Y)=\log M-H(X \mid Y) \geq \mathbb{P}[X=\hat{X}] \log M-h(\mathbb{P}[X \neq \hat{X}]) \tag{5.7}
\end{equation*}
$$

Proof. Apply data processing to $P_{X Y}$ vs. $U_{X} P_{Y}$ and the data processor (kernel) $(X, Y) \mapsto \mathbf{1}_{\{X \neq \hat{X}\}}$ (note that $P_{\hat{X} \mid Y}$ is fixed).

Remark: We can also derive Fano's Inequality as follows: Let $\epsilon=\mathbb{P}[X \neq \hat{X}]$. Apply data processing for M.I.

$$
I(X ; Y) \geq I(X ; \hat{X}) \geq \min _{P_{Z \mid X}}\left\{I\left(P_{X}, P_{Z \mid X}\right): \mathbb{P}[X=Z] \geq 1-\epsilon\right\} .
$$

This minimum will not be zero since if we force X and Z to agree with some probability, then $I(X ; Z)$ cannot be too small. It remains to compute the minimum, which is a nice convex optimization problem. (Hint: look for invariants that the matrix $P_{Z \mid X}$ must satisfy under permutations $(X, Z) \mapsto$ $(\pi(X), \pi(Z))$ then apply the convexity of $\left.I\left(P_{X}, \cdot\right)\right)$.

Theorem 5.4 (Fano inequality: general). Let $X, Y \in \mathcal{X},|\mathcal{X}|=M$ and let $Q_{X Y}=P_{X} P_{Y}$, then

$$
\begin{aligned}
I(X ; Y) & \geq d(\mathbb{P}[X=Y] \| \mathbb{Q}[X=Y]) \\
& \geq \mathbb{P}[X=Y] \log \frac{1}{\mathbb{Q}[X=Y]}-h(\mathbb{P}[X=Y]) \\
& \left(=\mathbb{P}[X=Y] \log M-h(\mathbb{P}[X=Y]) \text { if } P_{X} \text { or } P_{Y}=\text { uniform }\right)
\end{aligned}
$$

Proof. Apply data processing to $P_{X Y}$ and $Q_{X Y}$. Note that if P_{X} or $P_{Y}=$ uniform, then $\mathbb{Q}[X=$ $Y]=\frac{1}{M}$ always.

The following result is useful in providing converses for data transmission.
Corollary 5.1 (Lower bound on average probability of error). Let $W \rightarrow X \rightarrow Y \rightarrow \hat{W}$ and W is uniform on $[M] \stackrel{\triangleq}{\triangleq}\{1, \ldots, M\}$. Then

$$
\begin{align*}
P_{e} \triangleq \mathbb{P}[W \neq \hat{W}] & \geq 1-\frac{I(X ; Y)+h\left(P_{e}\right)}{\log M} \tag{5.8}\\
& \geq 1-\frac{I(X ; Y)+\log 2}{\log M} . \tag{5.9}
\end{align*}
$$

Proof. Apply Theorem 5.3 and the data processing for M.I.: $I(W ; \hat{W}) \leq I(X ; Y)$.

5.4 Fano, LeCam and minimax risks

In order to show an application to statistical decision theory, consider the following setting:

- Parameter space $\theta \in[0,1]$
- Observation model X_{i} - i.i.d. $\operatorname{Bern}(\theta)$
- Quadratic loss function:

$$
\ell(\hat{\theta}, \theta)=(\hat{\theta}-\theta)^{2}
$$

- Fundamental limit:

$$
R^{*}(n) \triangleq \sup _{\theta_{0} \in[0,1]} \inf _{\hat{\theta}} \mathbb{E}\left[\left(\hat{\theta}\left(X^{n}\right)-\theta\right)^{2} \mid \theta=\theta_{0}\right]
$$

A natural estimator to consider is the empirical mean:

$$
\hat{\theta}_{e m p}\left(X^{n}\right)=\frac{1}{n} \sum_{i} X_{i}
$$

It achieves the loss

$$
\begin{equation*}
\sup _{\theta_{0}} \mathbb{E}\left[\left(\hat{\theta}_{e m p}-\theta\right)^{2} \mid \theta=\theta_{0}\right]=\sup _{\theta_{0}} \frac{\theta_{0}\left(1-\theta_{0}\right)}{n}=\frac{1}{4 n} . \tag{5.10}
\end{equation*}
$$

The question is how close this is to the optimal.
First, recall the Cramer-Rao lower bound: Consider an arbitrary statistical estimation problem $\theta \rightarrow X \rightarrow \hat{\theta}$ with $\theta \in \mathbb{R}$ and $P_{X \mid \theta}\left(d x \mid \theta_{0}\right)=f(x \mid \theta) \mu(d x)$ with $f(x \mid \theta)$ is differentiable in θ. Then for any $\hat{\theta}(x)$ with $\mathbb{E}[\hat{\theta}(X) \mid \theta]=\theta+b(\theta)$ and smooth $b(\theta)$ we have

$$
\begin{equation*}
\mathbb{E}\left[(\hat{\theta}-\theta)^{2} \mid \theta=\theta_{0}\right] \geq b\left(\theta_{0}\right)^{2}+\frac{\left(1+b^{\prime}\left(\theta_{0}\right)\right)^{2}}{J_{F}\left(\theta_{0}\right)} \tag{5.11}
\end{equation*}
$$

where $J_{F}\left(\theta_{0}\right)=\operatorname{Var}\left[\left.\frac{\partial \ln f(X \mid \theta)}{\partial \theta} \right\rvert\, \theta=\theta_{0}\right]$ is the Fisher information (4.6). In our case, for any unbiased estimator (i.e. $b(\theta)=0$) we have

$$
\mathbb{E}\left[(\hat{\theta}-\theta)^{2} \mid \theta=\theta_{0}\right] \geq \frac{\theta_{0}\left(1-\theta_{0}\right)}{n}
$$

and we can see from (5.10) that $\hat{\theta}_{\text {emp }}$ is optimal in the class of unbiased estimators.
How do we show that biased estimators can not do significantly better? One method is the following. Suppose some estimator $\hat{\theta}$ achieves

$$
\begin{equation*}
\mathbb{E}\left[(\hat{\theta}-\theta)^{2} \mid \theta=\theta_{0}\right] \leq \Delta_{n}^{2} \tag{5.12}
\end{equation*}
$$

for all θ_{0}. Then, setup the following probability space:

$$
W \rightarrow \theta \rightarrow X^{n} \rightarrow \hat{\theta} \rightarrow \hat{W}
$$

- $W \sim \operatorname{Bern}(1 / 2)$
- $\theta=1 / 2+\kappa(-1)^{W} \Delta_{n}$ where $\kappa>0$ is to be specified later
- X^{n} is i.i.d. $\operatorname{Bern}(\theta)$
- $\hat{\theta}$ is the given estimator
- $\hat{W}=0$ if $\hat{\theta}>1 / 2$ and $\hat{W}=1$ otherwise

The idea here is that we use our high-quality estimator to distinguish between two hypotheses $\theta=1 / 2 \pm \kappa \Delta_{n}$. Notice that for probability of error we have:

$$
\mathbb{P}[W \neq \hat{W}]=\mathbb{P}\left[\hat{\theta}>1 / 2 \mid \theta=1 / 2-\kappa \Delta_{n}\right] \leq \frac{\mathbb{E}\left[(\hat{\theta}-\theta)^{2}\right]}{\kappa^{2} \Delta_{n}^{2}} \leq \frac{1}{\kappa^{2}}
$$

where the last steps are by Chebyshev and (5.12), respectively. Thus, from Theorem 5.3 we have

$$
I(W ; \hat{W}) \geq\left(1-\frac{1}{\kappa^{2}}\right) \log 2-h\left(\kappa^{-2}\right)
$$

On the other hand, from data-processing and golden formula we have

$$
I(W ; \hat{W}) \leq I\left(\theta ; X^{n}\right) \leq D\left(P_{X^{n} \mid \theta} \| \operatorname{Bern}(1 / 2)^{n} \mid P_{\theta}\right)
$$

Computing the last divergence we get

$$
D\left(P_{X^{n} \mid \theta} \| \operatorname{Bern}(1 / 2)^{n} \mid P_{\theta}\right)=n d\left(1 / 2-\kappa \Delta_{n} \| 1 / 2\right)=n\left(\log 2-h\left(1 / 2-\kappa \Delta_{n}\right)\right)
$$

As $\Delta_{n} \rightarrow 0$ we have

$$
h\left(1 / 2-\kappa \Delta_{n}\right)=\log 2-2 \log e \cdot\left(\kappa \Delta_{n}\right)^{2}+o\left(\Delta_{n}^{2}\right) .
$$

So altogether, we get that for every fixed κ we have

$$
\left(1-\frac{1}{\kappa^{2}}\right) \log 2-h\left(\kappa^{-2}\right) \leq 2 n \log e \cdot\left(\kappa \Delta_{n}\right)^{2}+o\left(n \Delta_{n}^{2}\right) .
$$

In particular, by optimizing over κ we get that for some constant $c \approx 0.015>0$ we have

$$
\Delta_{n}^{2} \geq \frac{c}{n}+o(1 / n)
$$

Together with (5.10), we have

$$
\frac{0.015}{n}+o(1 / n) \leq R^{*}(n) \leq \frac{1}{4 n},
$$

and thus the empirical-mean estimator is rate-optimal.
We mention that for this particular problem (estimating mean of Bernoulli samples) the minimax risk is known exactly:

$$
R^{*}(n)=\frac{1}{4(1+\sqrt{n})^{2}}
$$

but obtaining this requires rather sophisticated methods. In fact, even showing $R^{*}(n)=\frac{1}{4 n}+o(1 / n)$ requires careful priors on θ (unlike the simple two-point prior we used above). $\stackrel{2}{ }$

We demonstrated here the essense of the Fano method of proving lower (impossibility) bounds in statistical decision theory. Namely, given an estimation task we select a prior on θ which on one hand yields a rather small information $I(\theta ; X)$ and on the other hand has sufficiently separated points which thus should be distinguishable by a good estimator. For more see [Yu97].

[^1]
5.5 Entropy rate

Definition 5.1. The entropy rate of a process $\mathbb{X}=\left(X_{1}, X_{2}, \ldots\right)$ is

$$
\begin{equation*}
H(\mathbb{X}) \triangleq \lim _{n \rightarrow \infty} \frac{1}{n} H\left(X^{n}\right) \tag{5.13}
\end{equation*}
$$

provided the limit exists.
Stationarity is a sufficient condition for entropy rate to exist. Essentially, stationarity means invariance w.r.t. time shift. Formally, \mathbb{X} is stationary if $\left(X_{t_{1}}, \ldots, X_{t_{n}}\right)=\left(X_{t_{1}+k}, \ldots, X_{t_{n}+k}\right)$ for any $t_{1}, \ldots, t_{n}, k \in \mathbb{N}$.
Theorem 5.5. For any stationary process $\mathbb{X}=\left(X_{1}, X_{2}, \ldots\right)$

1. $H\left(X_{n} \mid X^{n-1}\right) \leq H\left(X_{n-1} \mid X^{n-2}\right)$
2. $\frac{1}{n} H\left(X^{n}\right) \geq H\left(X_{n} \mid X^{n-1}\right)$
3. $\frac{1}{n} H\left(X^{n}\right) \leq \frac{1}{n-1} H\left(X^{n-1}\right)$
4. $H(\mathbb{X})$ exists and $H(\mathbb{X})=\lim _{n \rightarrow \infty} \frac{1}{n} H\left(X^{n}\right)=\lim _{n \rightarrow \infty} H\left(X_{n} \mid X^{n-1}\right)$.
5. For double-sided process $\mathbb{X}=\left(\ldots, X_{-1}, X_{0}, X_{1}, X_{2}, \ldots\right), H(\mathbb{X})=H\left(X_{1} \mid X_{-\infty}^{0}\right)$ provided that $H\left(X_{1}\right)<\infty$.

Proof.

1. Further conditioning + stationarity: $H\left(X_{n} \mid X^{n-1}\right) \leq H\left(X_{n} \mid X_{2}^{n-1}\right)=H\left(X_{n-1} \mid X^{n-2}\right)$
2. Using chain rule: $\frac{1}{n} H\left(X^{n}\right)=\frac{1}{n} \sum H\left(X_{i} \mid X^{i-1}\right) \geq H\left(X_{n} \mid X^{n-1}\right)$
3. $H\left(X^{n}\right)=H\left(X^{n-1}\right)+H\left(X_{n} \mid X^{n-1}\right) \leq H\left(X^{n-1}\right)+\frac{1}{n} H\left(X^{n}\right)$
4. $n \mapsto \frac{1}{n} H\left(X^{n}\right)$ is a decreasing sequence and lower bounded by zero, hence has a limit $H(\mathbb{X})$. Moreover by chain rule, $\frac{1}{n} H\left(X^{n}\right)=\frac{1}{n} \sum_{i=1}^{n} H\left(X_{i} \mid X^{i-1}\right)$. Then $H\left(X_{n} \mid X^{n-1}\right) \rightarrow H(\mathbb{X})$. Indeed, from part $1 \lim _{n} H\left(X_{n} \mid X^{n-1}\right)=H^{\prime}$ exists. Next, recall from calculus: if $a_{n} \rightarrow a$, then the Cesàro's mean $\frac{1}{n} \sum_{i=1}^{n} a_{i} \rightarrow a$ as well. Thus, $H^{\prime}=H(\mathbb{X})$.
5. Assuming $H\left(X_{1}\right)<\infty$ we have from (3.10):

$$
\lim _{n \rightarrow \infty} H\left(X_{1}\right)-H\left(X_{1} \mid X_{-n}^{0}\right)=\lim _{n \rightarrow \infty} I\left(X_{1} ; X_{-n}^{0}\right)=I\left(X_{1} ; X_{-\infty}^{0}\right)=H\left(X_{1}\right)-H\left(X_{1} \mid X_{-\infty}^{0}\right)
$$

where $J_{F}(\theta)$ is as in $(\underline{5.11}), J_{F}(\pi) \triangleq \int \frac{\left(\pi^{\prime}(\theta)\right)^{2}}{\pi(\theta)} d \theta$. Then taking π supported on a $\frac{1}{n^{\frac{1}{4}}}$-neighborhood surrounding a given point θ_{0} we get that $\mathbb{E}\left[J_{F}(\theta)\right]=\frac{n}{\theta_{0}\left(1-\theta_{0}\right)}+o(n)$ and $J_{F}(\pi)=o(n)$, yielding

$$
R^{*}(n) \geq \frac{\theta_{0}\left(1-\theta_{0}\right)}{n}+o(1 / n)
$$

This is a rather general phenomenon: Under regularity assumptions in any iid estimation problem $\theta \rightarrow X^{n} \rightarrow \hat{\theta}$ with quadratic loss we have

$$
R^{*}(n)=\frac{1}{\inf _{\theta} J_{F}(\theta)}+o(1 / n) .
$$

Example: (Stationary processes)

1. \mathbb{X} - iid source $\Rightarrow H(\mathbb{X})=H\left(X_{1}\right)$
2. \mathbb{X} - mixed sources: Flip a coin with bias p at time $t=0$, if head, let $\mathbb{X}=\mathbb{Y}$, if tail, let $\mathbb{X}=\mathbb{Z}$. Then $H(\mathbb{X})=p H(\mathbb{Y})+\bar{p} H(\mathbb{Z})$.
3. \mathbb{X}-stationary Markov chain : $X_{1} \rightarrow X_{2} \rightarrow X_{3} \rightarrow \cdots$

$$
H\left(X_{n} \mid X^{n-1}\right)=H\left(X_{n} \mid X_{n-1}\right) \Rightarrow H(\mathbb{X})=H\left(X_{2} \mid X_{1}\right)=\sum_{a, b} \mu(a) P_{b \mid a} \log \frac{1}{P_{b \mid a}}
$$

where μ is an invariant measure (possibly non-unique; unique if the chain is ergodic).
4. \mathbb{X}-hidden Markov chain : Let $X_{1} \rightarrow X_{2} \rightarrow X_{3} \rightarrow \cdots$ be a Markov chain. Fix $P_{Y \mid X}$. Let $X_{i} \xrightarrow{P_{Y \mid X}} Y_{i}$. Then $\mathbb{Y}=\left(Y_{1}, \ldots\right)$ is a stationary process. Therefore $H(\mathbb{Y})$ exists but it is very difficult to compute (no closed-form solution to date), even if \mathbb{X} is a binary Markov chain and $P_{Y \mid X}$ is a BSC.

5.6 Entropy and symbol (bit) error rate

In this section we show that the entropy rates of two processes \mathbb{X} and \mathbb{Y} are close whenever they can be "coupled". Coupling of two processes means defining them on a common probability space so that average distance between their realizations is small. In our case, we will require that the symbol error rate be small, i.e.

$$
\begin{equation*}
\frac{1}{n} \sum_{j=1}^{n} \mathbb{P}\left[X_{j} \neq Y_{j}\right] \leq \epsilon . \tag{5.14}
\end{equation*}
$$

Notice that if we define the Hamming distance as

$$
d_{H}\left(x^{n}, y^{n}\right) \triangleq \sum_{j=1}^{n} 1\left\{x_{j} \neq y_{j}\right\}
$$

then indeed (5.14) corresponds to requiring

$$
\mathbb{E}\left[d_{H}\left(X^{n}, Y^{n}\right)\right] \leq n \epsilon
$$

Before showing our main result, we show that Fano's inequality Theorem 5.3 can be tensorized:
Proposition 5.1. Let X_{k} take values on a finite alphabet \mathcal{X}. Then

$$
\begin{equation*}
H\left(X^{n} \mid Y^{n}\right) \leq n F_{|\mathcal{X}|}(1-\delta), \tag{5.15}
\end{equation*}
$$

where

$$
\delta=\frac{1}{n} \mathbb{E}\left[d_{H}\left(X^{n}, Y^{n}\right)\right]=\frac{1}{n} \sum_{j=1}^{n} \mathbb{P}\left[X_{j} \neq Y_{j}\right] .
$$

Proof. For each $j \in[n]$ consider $\hat{X}_{j}\left(Y^{n}\right)=Y_{j}$. Then from (5.6) we get

$$
\begin{equation*}
H\left(X_{j} \mid Y^{n}\right) \leq F_{M}\left(\mathbb{P}\left[X_{j}=Y_{j}\right),\right. \tag{5.16}
\end{equation*}
$$

where we denoted $M=|\mathcal{X}|$. Then, upper-bounding joint entropy by the sum of marginals, cf. (1.1), and combining with (5.16) we get

$$
\begin{align*}
H\left(X^{n} \mid Y^{n}\right) & \leq \sum_{j=1}^{n} H\left(X_{j} \mid Y^{n}\right) \tag{5.17}\\
& \leq \sum_{j=1}^{n} F_{M}\left(\mathbb{P}\left[X_{j}=Y_{j}\right]\right) \tag{5.18}\\
& \leq n F_{M}\left(\frac{1}{n} \sum_{j=1}^{n} \mathbb{P}\left[X_{j}=Y_{j}\right]\right) . \tag{5.19}
\end{align*}
$$

where in the last step we used concavity of F_{M} and Jensen's inequality. Noticing that

$$
\frac{1}{n} \sum_{j=1}^{n} \mathbb{P}\left[X_{j}=Y_{j}\right]=1-\delta
$$

concludes the proof.
Corollary 5.2. Consider two processes \mathbb{X} and \mathbb{Y} with entropy rates $H(\mathbb{X})$ and $H(\mathbb{Y})$. If

$$
\mathbb{P}\left[X_{j} \neq Y_{j}\right] \leq \epsilon
$$

for every j and if \mathbb{X} takes values on a finite alphabet of size M, then

$$
H(\mathbb{X})-H(\mathbb{Y}) \leq F_{M}(1-\epsilon)
$$

If both processes have alphabets of size M then

$$
|H(\mathbb{X})-H(\mathbb{Y})| \leq \epsilon \log M+h(\epsilon) \rightarrow 0 \quad \text { as } \epsilon \rightarrow 0
$$

Proof. There is almost nothing to prove:

$$
H\left(X^{n}\right) \leq H\left(X^{n}, Y^{n}\right)=H\left(Y^{n}\right)+H\left(X^{n} \mid Y^{n}\right)
$$

and apply (5.15). For the last statement just recall the expression for F_{M}.

5.7 Mutual information rate

Definition 5.2 (Mutual information rate).

$$
I(\mathbb{X} ; \mathbb{Y})=\lim _{n \rightarrow \infty} \frac{1}{n} I\left(X^{n} ; Y^{n}\right)
$$

provided the limit exists.
Example: Gaussian processes. Consider \mathbb{X}, \mathbb{N} two stationary Gaussian processes, independent of each other. Assume that their auto-covariance functions are absolutely summable and thus there exist continuous power spectral density functions f_{X} and f_{N}. Without loss of generality, assume all means are zero. Let $c_{X}(k)=\mathbb{E}\left[X_{1} X_{k+1}\right]$. Then f_{X} is the Fourier transform of the auto-covariance function c_{X}, i.e., $f_{X}(\omega)=\sum_{k=-\infty}^{\infty} c_{X}(k) \mathrm{e}^{i \omega k}$. Finally, assume $f_{N} \geq \delta>0$. Then recall from Lecture 2 :

$$
\begin{aligned}
I\left(X^{n} ; X^{n}+N^{n}\right) & =\frac{1}{2} \log \frac{\operatorname{det}\left(\Sigma_{X^{n}}+\Sigma_{N^{n}}\right)}{\operatorname{det} \Sigma_{N^{n}}} \\
& =\frac{1}{2} \sum_{i=1}^{n} \log \sigma_{i}-\frac{1}{2} \sum_{i=1}^{n} \log \lambda_{i},
\end{aligned}
$$

where σ_{j}, λ_{j} are the eigenvalues of the covariance matrices $\Sigma_{Y^{n}}=\Sigma_{X^{n}}+\Sigma_{N^{n}}$ and $\Sigma_{N^{n}}$, which are all Toeplitz matrices, e.g., $\left(\Sigma_{X^{n}}\right)_{i j}=\mathbb{E}\left[X_{i} X_{j}\right]=c_{X}(i-j)$. By Szegö's theorem (see Section $\underline{5.8^{*}}$):

$$
\frac{1}{n} \sum_{i=1}^{n} \log \sigma_{i} \rightarrow \frac{1}{2 \pi} \int_{0}^{2 \pi} \log f_{Y}(\omega) d \omega
$$

Note that $c_{Y}(k)=\mathbb{E}\left[\left(X_{1}+N_{1}\right)\left(X_{k+1}+N_{k+1}\right)\right]=c_{X}(k)+c_{N}(k)$ and hence $f_{Y}=f_{X}+f_{N}$. Thus, we have

$$
\frac{1}{n} I\left(X^{n} ; X^{n}+N^{n}\right) \rightarrow I(\mathbb{X} ; \mathbb{X}+\mathbb{N})=\frac{1}{4 \pi} \int_{0}^{2 \pi} \log \frac{f_{X}(w)+f_{N}(\omega)}{f_{N}(\omega)} d \omega
$$

(Note: maximizing this over $f_{X}(\omega)$ leads to the famous water filling solution $f_{X}^{*}(\omega)=\left|T-f_{N}(\omega)\right|^{+}$.)

5.8* Toeplitz matrices and Szegö's theorem

Theorem 5.6 (Szegö). Let $f:[0,2 \pi) \rightarrow \mathbb{R}$ be the Fourier transform of a summable sequence $\left\{a_{k}\right\}$, that is

$$
f(\omega)=\sum_{k=-\infty}^{\infty} e^{i k \omega} a_{k}, \quad \sum\left|a_{k}\right|<\infty
$$

Then for any $\phi: \mathbb{R} \rightarrow \mathbb{R}$ continuous on the closure of the range of f, we have

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} \phi\left(\sigma_{n, j}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \phi(f(\omega)) d \omega
$$

where $\left\{\sigma_{n, j}, j=1, \ldots, n\right\}$ are the eigenvalues of the Toeplitz matrix $T_{n}=\left\{a_{\ell-m}\right\}_{\ell, m=1}^{n}$.
Proof sketch. The idea is to approximate ϕ by polynomials, while for polynomials the statement can be checked directly. An alternative interpretation of the strategy is the following: Roughly speaking we want to show that the empirical distribution of the eigenvalues $\frac{1}{n} \sum_{j=1}^{n} \delta_{\sigma_{n, j}}$ converges weakly to the distribution of $f(W)$, where W is uniformly distributed on $[0,2 \pi]$. To this end, let us check that all moments converge. Usually this does not imply weak convergence, but in this case an argument can be made.

For example, for $\phi(x)=x^{2}$ we have

$$
\begin{aligned}
\frac{1}{n} \sum_{j=1}^{n} \sigma_{n, j}^{2} & =\frac{1}{n} \operatorname{tr} T_{n}^{2} \\
& =\frac{1}{n} \sum_{\ell, m=1}^{n}\left(T_{n}\right)_{\ell, m}\left(T_{n}\right)_{m, \ell} \\
& =\frac{1}{n} \sum_{\ell, m} a_{\ell-m} a_{m-\ell} \\
& =\frac{1}{n} \sum_{\ell=-n-1}^{n-1}(n-|\ell|) a_{\ell} a_{-\ell} \\
& =\sum_{x \in(-1,1) \cap \frac{1}{n} \mathbb{Z}}(1-|x|) a_{n x} a_{-n x},
\end{aligned}
$$

Substituting $a_{\ell}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(\omega) e^{i \omega \ell}$ we get

$$
\begin{equation*}
\frac{1}{n} \sum_{j=1}^{n} \sigma_{n, j}^{2}=\frac{1}{(2 \pi)^{2}} \iint f(\omega) f\left(\omega^{\prime}\right) \theta_{n}\left(\omega-\omega^{\prime}\right) \tag{5.20}
\end{equation*}
$$

where

$$
\theta_{n}(u)=\sum_{x \in(-1,1) \cap \frac{1}{n} \mathbb{Z}}(1-|x|) e^{-i n u x}
$$

is a Fejer kernel and converges to a δ-function: $\theta_{n}(u) \rightarrow 2 \pi \delta(u)$ (in the sense of convergence of Schwartz distributions). Thus from (5.20) we get

$$
\frac{1}{n} \sum_{j=1}^{n} \sigma_{n, j}^{2} \rightarrow \frac{1}{(2 \pi)^{2}} \iint f(\omega) f\left(\omega^{\prime}\right) 2 \pi \delta\left(\omega-\omega^{\prime}\right) d \omega d \omega^{\prime}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f^{2}(\omega) d \omega
$$

as claimed.

MIT OpenCourseWare
https://ocw.mit.edu

6.441 Information Theory

Spring 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

[^0]: ${ }^{1}$ That is, if $P_{X^{n}, Y^{n}}=P_{Y^{n}} \Pi P_{X_{i} \mid Y_{i}}$ as measures.

[^1]: ${ }^{2}$ In fact, getting this result is not hard if one accepts the following Bayesian Cramer-Rao lower bound: For any estimator $\hat{\theta}$ and for any prior $\pi(\theta) d \theta$ with smooth density π we have

 $$
 \mathbb{E}_{\theta \sim \pi}\left[(\hat{\theta}(X)-\theta)^{2}\right] \geq \frac{1}{\mathbb{E}\left[J_{F}(\theta)\right]+J_{F}(\pi)}
 $$

